treewars/gamedata.cpp

146 lines
3.5 KiB
C++
Raw Normal View History

#include "gamedata.h"
#include "mathutils.h"
#include "debug.h"
#include <list>
#include <algorithm>
using std::list;
int GameData::PLAYER1_COLOUR = 0x4a483f;
int GameData::PLAYER2_COLOUR = 0x090c7a;
GameData::GameData()
: Graph(true)
{
current = NULL;
player = PLAYER1;
}
GameData::~GameData() { }
void GameData::toggle_turn()
{
if (player == PLAYER1) player = PLAYER2;
else if (player == PLAYER2) player = PLAYER1;
}
void GameData::do_vertex(int x, int y, int r)
{
int colour;
if (player == PLAYER1) colour = PLAYER1_COLOUR;
if (player == PLAYER2) colour = PLAYER2_COLOUR;
if (point_in_vertex(x, y, r)) select_vertex(x, y);
else add_vertex(x, y, r, colour);
}
void GameData::select_vertex(int x, int y)
{
for (list<Vertex*>::iterator cursor = vertices.begin();
cursor != vertices.end(); cursor++)
{
Vertex* v = *cursor;
if ((MathUtils::distance(v->x, v->y, x, y) <= v->r) &&
(v->colour == PLAYER1_COLOUR && player == PLAYER1 ||
v->colour == PLAYER2_COLOUR && player == PLAYER2))
{
current = v;
return;
}
}
}
bool GameData::add_vertex(int x, int y, int r, int colour)
{
// this is the special case for adding the first vertex for each player
if (current == NULL)
{
if ((player == PLAYER1 && !player1_played) ||
(player == PLAYER2 && !player2_played))
{
Graph::add_vertex(x, y, r, colour, 10);
#ifdef DEBUG
fprintf(stderr, "debug: GameData::add_vertex(): strength=%f\n",
calculate_strength(*(vertices.rbegin())));
#endif
if (player == PLAYER1) player1_played = true;
if (player == PLAYER2) player2_played = true;
toggle_turn();
return true;
}
return false;
}
if (Graph::add_vertex(x, y, r, colour, 10, current))
{
#ifdef DEBUG
fprintf(stderr, "debug: GameData::add_vertex(): strength=%f\n",
calculate_strength(*(vertices.rbegin())));
#endif
clear_current_vertex();
toggle_turn();
return true;
}
return false;
}
// Oh the recursive recursion!
float GameData::calculate_strength(Vertex* node, unsigned int depth, list<Vertex*>* visited)
{
if (visited == NULL) visited = new list<Vertex*>;
visited->push_back(node);
list<Vertex*> all_nodes = get_colour(node->colour);
// Special case - a one-node tree just returns its own score!
if (all_nodes.size() == 1) return (float)node->score;
// Find which vertices we need to visit from here
list<Edge> es = get_vertex_edges(node);
list<Vertex*> to_visit;
for (list<Edge>::iterator cursor = es.begin(); cursor != es.end();
cursor++)
{
Edge e = *cursor;
// if this is true, we haven't visited the vertex on the other end of
// this edge yet
if (e.a == node &&
find(visited->begin(), visited->end(), e.b) == visited->end())
{
to_visit.push_back(e.b);
}
else if (e.a == node &&
find(visited->begin(), visited->end(), e.b) == visited->end())
{
to_visit.push_back(e.a);
}
}
// This is the base case - this node has no unvisited neighbors
if (to_visit.empty()) return (float)(node->score) / depth;
// Else, iterate through to_visit and visit them all, summing their
// effective strengths adjusted for depth.
// Since our trees are acyclic, this can't loop.
float modscore = (float)node->score;
if (depth > 0) modscore /= depth;
for (list<Vertex*>::iterator cursor = to_visit.begin();
cursor != to_visit.end(); cursor++)
{
Vertex* v = *cursor;
modscore += calculate_strength(v, depth+1, visited);
}
if (depth == 0) delete visited;
return modscore;
}