a_pleasant_stroll/world.lua

259 lines
7.4 KiB
Lua

--- Procedural generation methods, and other aspects of generating the
--- environment
function init_world()
-- constants for map tiles' sprite locations, as long as we have the
-- tokens
tile_tree = 1
tile_tree_stump = 3
tile_bush = 5
tile_empty_bush = 7
tile_cactus = 9
tile_flowering_cactus = 11
tile_cactus_stump = 13
tile_big_mushroom = 32
tile_mushroom_stump = 34
tile_pebbles = 36
tile_long_grass = 38
tile_red_flowers = 40
tile_pink_flowers = 42
tile_fairy_ring = 44
tile_rock = 46
-- Metadata for different biomes
-- tile_frequencies tuples are {frequency, sprite_index}, see index_map.md
-- frequencies by convention add up to 1000, but this is arbitrary, the
-- only concern is the space consumed by the resulting tables.
biome_data = {
meadow = {
biome_frequency = 20,
base_color = 3,
tile_frequencies = {
{525, 0},
{200, tile_red_flowers},
{200, tile_pink_flowers},
{55, tile_long_grass},
{19, tile_bush},
{1, tile_tree}
}
},
grassland = {
biome_frequency = 55,
base_color = 3,
tile_frequencies = {
{500, 0},
{345, tile_long_grass},
{4, tile_bush},
{1, tile_tree},
{100, tile_red_flowers},
{50, tile_pink_flowers}
}
},
forest = {
biome_frequency = 20,
base_color = 3,
tile_frequencies = {
{600, 0},
{200, tile_tree},
{50, tile_bush},
{50, tile_red_flowers},
{40, tile_mushrooms},
{59, tile_pink_flowers},
{1, tile_big_mushroom}
}
},
desert = {
biome_frequency = 5,
base_color = 9,
tile_frequencies = {
{800, 0},
{109, tile_pebbles},
{60, tile_cactus},
{30, tile_rock},
{1, tile_flowering_cactus}
}
}
}
-- Why is this hard-coded separately from the biome_data? glad you asked.
-- Lua's pairs() function appears not to guarantee a consistent return order,
-- and we want our world to be deterministically generated,
-- so the biome_metadata array needs to have its entries appear consistently.
biome_list = {"grassland", "meadow", "forest", "desert"}
-- this is the frequency list for the biomes themselves
biome_metadata = {}
for i=1,#biome_list do
local biome = biome_list[i]
-- add the biome's name N times to the biome metadata 'hat'
for i=1,biome_data[biome].biome_frequency do
add(biome_metadata, biome)
end
build_biome(biome, biome_data[biome])
end
object_interaction_map = {
[tile_bush] = {
replacement = tile_empty_bush,
sfx = 13,
drop = 81
},
[tile_tree] = {
replacement = tile_tree_stump,
sfx = 11,
drop = 66
},
[tile_big_mushroom] = {
replacement = tile_mushroom_stump,
sfx = 12,
drop = 64
},
[tile_flowering_cactus] = {
replacement = tile_cactus_stump,
sfx = 12,
drop = 80
},
[tile_cactus] = {
replacement = tile_cactus_stump,
sfx = 12,
drop = 65
}
}
-- initialize a ring buffer of changed positions. In use, this will be keyed
-- using strings of the form mod_buffer["x:y"], using absolute world
-- coordinates. this is to flatten the buffer so that #mod_cache is useful
-- for checking against the number of allowed entries
mod_buffer = {}
mod_queue = {}
end
-- draw the sprites for this part of the world to the screen
-- this calculates everything about the world fresh every frame,
-- but pico-8 handles this just fine!
function draw_world(start_x, start_y)
for x=0,6 do
for y=0,6 do
-- color the background for this segment
rectfill(x*16+8, y*16+8, x*16+24, y*16+24,
get_base_color(start_x-3+x, start_y-3+y))
-- now get the sprite, and render as long as it isn't 0
local sprite = get_tile(start_x-3+x, start_y-3+y)
if sprite ~= 0 then
spr(sprite, x*16+8, y*16+8, 2, 2)
end
end
end
end
-- build the lookup table for a given biome, based on the biome_meta data for
-- that string.
function build_biome(biome_name, data)
local meta_frequencies = data.tile_frequencies
local tile_lookup = {}
for i=1,#meta_frequencies do
local tuple = meta_frequencies[i]
for j=1,tuple[1] do
add(tile_lookup, tuple[2])
end
end
data.tile_lookup = tile_lookup
end
-- generates a unique identifier for a position
-- uses srand() and rand() to get an unpredictable value (is this too slow?)
-- the two seed values are randomly chosen. Change them and change the world.
function generate_uid(pos_x, pos_y)
srand((pos_x + 2229) * (pos_y + 12295))
return flr(rnd(0xffff))
end
-- given an {x,y} position, calculates the aligned starting position for the
-- biome that position is in.
-- biomes are currently defined to be 128x128
function calculate_biome_pos(pos_x, pos_y)
return flr(pos_x / 128), flr(pos_y / 128)
end
-- determines which biome a given world map position should be,
-- returns the object out of the biome_data table
function get_biome_name(pos_x, pos_y)
local biome_pos_x, biome_pos_y = calculate_biome_pos(pos_x, pos_y)
local uid = generate_uid(biome_pos_x, biome_pos_y)
return biome_metadata[(uid % #biome_metadata) + 1]
end
-- get the background color for the current biome
function get_base_color(x, y)
local biome = get_biome_name(x, y)
return biome_data[biome].base_color
end
-- determine what sprite to render for a given position.
function get_tile(pos_x, pos_y)
-- lookup changes in the change buffer
local modded_sprite = mod_buffer[get_mod_key(pos_x, pos_y)]
if (modded_sprite) return modded_sprite
local biome_name = get_biome_name(pos_x, pos_y)
local biome = biome_data[biome_name]
local uid = generate_uid(pos_x, pos_y)
return biome.tile_lookup[(uid % #biome.tile_lookup) + 1]
end
---
--- mod buffer functions - these handle locations on the world map that have
--- changed from their 'default' state
---
-- x and y are global coords
function get_mod_key(x, y)
return tostr(x) .. ":" .. tostr(y)
end
-- x and y are map-local coords
function write_map_change(new_sprite, x, y, perm)
local key = get_mod_key(x, y)
mod_buffer[key] = new_sprite
-- the queue gives us a time-ordered list of items to delete.
-- anything that should persist is simply not added to the queue,
-- making it un-deletable. It also doesn't count against the maximum
-- size of the mod queue before deletion, meaning it permanently inflates
-- the size of ram.
-- obviously if we end up with a *very large number* of persistent
-- objects we can run into trouble, but this is functionally a design
-- limitation. We also only save 32 of these on exit, further limiting
-- the possible size of the 'memory leak' pool, as it were.
if not perm then
add(mod_queue, key)
end
if #mod_queue >= 8192 then
cull_mod_buffer()
end
end
function cull_mod_buffer()
-- we cull 512 entries at a time.
local count = 0
for i=1,511 do
local key = mod_queue[1]
if (not key) return -- check that we're not out of items for some reason
mod_buffer[key] = nil
del(mod_queue, key)
end
end