treewars/gamedata.cpp

240 lines
5.3 KiB
C++

#include "gamedata.h"
#include "mathutils.h"
#include "debug.h"
#include <list>
#include <algorithm>
#include <cassert>
using std::list;
int GameData::PLAYER1_COLOUR = 0x4a483f;
int GameData::PLAYER2_COLOUR = 0x090c7a;
GameData::GameData()
: Graph(true)
{
current = NULL;
player = PLAYER1;
mode = MODE_MOVE;
}
GameData::~GameData() { }
void GameData::toggle_turn()
{
mode = MODE_MOVE;
current = NULL;
if (!endgame())
{
if (player == PLAYER1) player = PLAYER2;
else if (player == PLAYER2) player = PLAYER1;
}
}
void GameData::do_vertex(int x, int y, int r)
{
if (current != NULL &&
(MathUtils::distance(current->x, current->y, x, y)
> get_range()))
{
select_vertex(x, y);
return;
}
int colour;
if (player == PLAYER1) colour = PLAYER1_COLOUR;
if (player == PLAYER2) colour = PLAYER2_COLOUR;
if (mode == MODE_MOVE)
{
if (point_in_vertex(x, y)) select_vertex(x, y);
else add_vertex(x, y, r, colour);
}
if (mode == MODE_ATTACK)
{
Vertex* v = vertex_at(x, y);
if (v == NULL) return;
if (v->colour == colour) select_vertex(x, y);
else attack_vertex(v);
}
}
void GameData::select_vertex(int x, int y)
{
for (list<Vertex*>::iterator cursor = vertices.begin();
cursor != vertices.end(); cursor++)
{
Vertex* v = *cursor;
if ((MathUtils::distance(v->x, v->y, x, y) <= v->r) &&
(v->colour == PLAYER1_COLOUR && player == PLAYER1 ||
v->colour == PLAYER2_COLOUR && player == PLAYER2))
{
current = v;
return;
}
}
}
bool GameData::add_vertex(int x, int y, int r, int colour)
{
if (mode == MODE_ATTACK) return false;
if (current == NULL)
{
// this is the special case for adding the first vertex for each player
if ((player == PLAYER1 && !player1_played) ||
(player == PLAYER2 && !player2_played))
{
Graph::add_vertex(x, y, r, colour, 10);
#ifdef DEBUG
fprintf(stderr, "debug: GameData::add_vertex(): strength=%2.f\n",
calculate_strength(*(vertices.rbegin())));
#endif
if (player == PLAYER1) player1_played = true;
if (player == PLAYER2) player2_played = true;
toggle_turn();
return true;
}
return false;
}
if (Graph::add_vertex(x, y, r, colour, 10, current))
{
#ifdef DEBUG
fprintf(stderr, "debug: GameData::add_vertex(): strength=%.2f\n",
calculate_strength(*(vertices.rbegin())));
#endif
toggle_turn();
return true;
}
return false;
}
float GameData::calculate_strength(Vertex* node)
{
list<Vertex*> visited;
// Special case - a one-node tree just returns its own score!
list<Vertex*> all_nodes = get_colour(node->colour);
if (all_nodes.size() == 1) return (float)node->score;
return calculate_strength_r(node, 0, visited);
}
// Oh the recursive recursion!
float GameData::calculate_strength_r(Vertex* node, unsigned int depth, list<Vertex*>& visited)
{
// Find which vertices we need to visit from here
list<Vertex*> neighbors = node->neighbors;
list<Vertex*> to_visit;
visited.push_back(node);
for (list<Vertex*>::iterator cursor = neighbors.begin();
cursor != neighbors.end(); cursor++)
{
Vertex* v = *cursor;
// if this is true, we haven't visited the vertex on the other end of
// this edge yet
if (find(visited.begin(), visited.end(), v) == visited.end())
{
to_visit.push_back(v);
}
}
// This is the base case - this node has no unvisited neighbors
if (to_visit.empty())
{
assert(depth > 0);
return (float)(node->score) / depth;
}
// Else, iterate through to_visit and visit them all, summing their
// effective strengths adjusted for depth.
// Since our trees are acyclic, this can't loop.
float modscore = (float)node->score;
if (depth > 0) modscore /= depth;
for (list<Vertex*>::iterator cursor = to_visit.begin();
cursor != to_visit.end(); cursor++)
{
Vertex* v = *cursor;
modscore += calculate_strength_r(v, depth+1, visited);
}
return modscore;
}
int GameData::get_range(Vertex* node)
{
if (node == NULL) node = current;
if (node == NULL) return 0;
else if (mode == MODE_MOVE) return 100;
else if (mode == MODE_ATTACK)
{
int range = 200;
list<Vertex*> neighbors = node->neighbors;
for(list<Vertex*>::iterator cursor = neighbors.begin();
cursor != neighbors.end(); cursor++)
{
Vertex* v = *cursor;
range -= 100 - MathUtils::distance(v->x, v->y, node->x, node->y);
}
if (range < 0) range = 0;
return range;
}
}
void GameData::attack_vertex(Vertex* target)
{
float atk_str = calculate_strength(current);
float def_str = calculate_strength(target);
float armor = def_str / 10; // how much energy it takes to deal 1 damage
int damage = (int)(atk_str / armor);
target->score -= damage;
if (target->score <= 0) remove_vertex(target);
#ifdef DEBUG
fprintf(stderr, "debug: GameData::attack_vertex(): atk_str=%.2f, def_str=%.2f, armor=%.2f, damage=%d\n", atk_str, def_str, armor, damage);
#endif
toggle_turn();
}
bool GameData::endgame()
{
if (!(player1_played && player2_played)) return false;
if (get_colour(PLAYER1_COLOUR).empty())
{
player = WIN2;
debug("Gamedata::endgame(): player 2 wins\n");
return true;
}
if (get_colour(PLAYER2_COLOUR).empty())
{
player = WIN1;
debug("Gamedata::endgame(): player 1 wins\n");
return true;
}
return false;
}