1712 lines
50 KiB
C
1712 lines
50 KiB
C
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\
|
|
* This is GNU Go, a Go program. Contact gnugo@gnu.org, or see *
|
|
* http://www.gnu.org/software/gnugo/ for more information. *
|
|
* *
|
|
* Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, *
|
|
* 2008 and 2009 by the Free Software Foundation. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or *
|
|
* modify it under the terms of the GNU General Public License as *
|
|
* published by the Free Software Foundation - version 3 or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License in file COPYING for more details. *
|
|
* *
|
|
* You should have received a copy of the GNU General Public *
|
|
* License along with this program; if not, write to the Free *
|
|
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor, *
|
|
* Boston, MA 02111, USA. *
|
|
\* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
|
|
|
|
/* Extract fuseki patterns from the initial moves of a collection
|
|
* of games.
|
|
*
|
|
* This program finds the most common positions from the initial moves
|
|
* of a collection of games, and generates patterns in patterns.db
|
|
* format for the most common moves in these positions.
|
|
*
|
|
* Positions are identified by Zobrist hash values, completely
|
|
* ignoring the risk for hash collisions. In order to take all
|
|
* symmetries into account, we compute 8 hash values, one for each
|
|
* transformation of the board. Rather than playing on 8 boards in
|
|
* parallel, we construct 8 transformed copies of the Zobrist hash
|
|
* tables and compute one hash value for each of these. To get a
|
|
* transformation invariant hash, we finally sort the 8 hash values.
|
|
*
|
|
* Example:
|
|
* extract_fuseki sgflist 9 8 400
|
|
*
|
|
* generates (up to) 400 patterns, considering the 8 first moves of
|
|
* the 9x9 games listed in the file sgflist, and writes the patterns
|
|
* to stdout. sgflist is a file containing sgf filenames, one per line.
|
|
*
|
|
* The generated patterns may look like, e.g.
|
|
* Pattern Fuseki33
|
|
* # 3/18
|
|
*
|
|
* |.........
|
|
* |.........
|
|
* |...*.X...
|
|
* |.........
|
|
* |....O....
|
|
* |.........
|
|
* |.........
|
|
* |.........
|
|
* |.........
|
|
* +---------
|
|
*
|
|
* :8,-,value(3)
|
|
*
|
|
* The comment line gives the information that this position has been
|
|
* found 18 times among the analyzed games, and 3 out of these 18 times,
|
|
* the move * has been played. The same number 3 is entered as pattern
|
|
* value on the colon line for use by the fuseki module.
|
|
*/
|
|
|
|
/*
|
|
* Notes on the statistics:
|
|
*
|
|
* The statistics code assumes that every input file is valid. Use
|
|
* the output file option to sort out which input files are valid, and
|
|
* check output for problems. Rerun after fixing/removing invalid files.
|
|
*
|
|
* Outcome is defined by RE in sgf. Files without a parsable RE, or which
|
|
* do not have a winner, are invalid and need to be excluded.
|
|
*
|
|
* Pearson chi squared at 5% is used to test significance of
|
|
* differences among moves at a given position. Moves excluded by
|
|
* popularity rules are grouped together and considered as one. A
|
|
* positive result means that among all possible moves in a position,
|
|
* there's a difference somewhere. The next question is where. One
|
|
* clue comes from dchisq, which is the contribution to the overall
|
|
* chi squared for each move, with larger meaning higher impact on
|
|
* significance of overall result. Another comes from post hoc tests.
|
|
* Each pair of moves from a position with a statistically significant
|
|
* impact of move choice is compared, again with Pearson chi squared
|
|
* at 5%, and the positive tests printed. No correction is done for
|
|
* multiple tests. Pairs with less than 6 total moves are not tested,
|
|
* so it's possible for there to be a significant overall result
|
|
* without any positive post hocs. In this case, the overall result is
|
|
* doubtful as well.
|
|
*
|
|
* If the interest is solely in statistics, using min_pos_freq to
|
|
* avoid positions without enough data to hope for significance makes
|
|
* sense: 6 at a minimum.
|
|
*
|
|
* Note that the popularity exclusion rules can result in patterns being
|
|
* left in the db which have no parent in the db.
|
|
*
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include "liberty.h"
|
|
#include "gg_utils.h"
|
|
#include "random.h"
|
|
#include "../sgf/sgftree.h"
|
|
|
|
#define USAGE "\n\
|
|
Usage: extract_fuseki files boardsize moves patterns handicap strength half_board min_pos_freq min_move_percent min_move_freq [output file]\n\
|
|
files: The name of a file listing sgf files to examine,\n\
|
|
one filename per line.\n\
|
|
boardsize: Only consider games with this size.\n\
|
|
moves: Number of moves considered in each game.\n\
|
|
handicap: 0 - no handicap, 1 - any game, 2-9 - two to nine handicap stones\n\
|
|
10 any handicap game\n\
|
|
strength: The lowest strength of the players (1k-30k)\n\
|
|
half_board: 0 - full board patterns, 1 - half board patterns\n\
|
|
min_pos_freq: how many times a position must occur before patterns\n\
|
|
from it are generated\n\
|
|
min_move_percent: minimum popularity relative to most popular move \n\
|
|
(counted by unique players) required of a move \n\
|
|
in a given position before it gets a pattern\n\
|
|
min_move_freq: minimum number of unique players who must play a move\n\
|
|
before it gets a pattern\n\
|
|
output file: Optional (if this exists, extract_fuseki will sort the games instead)\n\
|
|
"
|
|
|
|
/* Maximum length of sgf filename. */
|
|
#define BUFSIZE 1000
|
|
|
|
/* Number of moves to consider in each game, given as argument.*/
|
|
int moves_per_game;
|
|
|
|
/* Flag checking the setting for generating half board patterns */
|
|
int half_board_patterns = 0;
|
|
|
|
/* Maximum number of patterns to generate */
|
|
#define MAX_PATTERNS_TO_EXTRACT 100000
|
|
|
|
|
|
/* Handicap value, given as argument.*/
|
|
int handicap_value;
|
|
|
|
/* Lowest strength, given as argument.*/
|
|
int player_strength;
|
|
|
|
|
|
/* Min # of times a position must be seen before moves from it become
|
|
* patterns.
|
|
* Might want this larger to ensure reasonable statistics, 6 or more, say
|
|
* or smaller to hit every move down to unique games, 2 say;
|
|
* or even keep churning out moves with 1.
|
|
*
|
|
* Given as argument.
|
|
*/
|
|
|
|
int min_position_freq;
|
|
|
|
|
|
/* popularity arguments */
|
|
double min_move_percent;
|
|
int min_move_freq;
|
|
|
|
|
|
/* Number of games to analyze. */
|
|
int number_of_games;
|
|
|
|
/* Dynamically allocated array marking the games that could not be
|
|
* used for some reason.
|
|
*/
|
|
int *unused_games;
|
|
|
|
/* WARN 1 warns about unused games. */
|
|
/* WARN 2 also notes assumptions about metainfo. */
|
|
#define WARN 1
|
|
|
|
|
|
/* Dynamically allocated list of sgf file names. */
|
|
char **sgf_names;
|
|
|
|
/* Zobrist hash tables, rotated and reflected into all 8 transformations. */
|
|
unsigned int O_hash[8][MAX_BOARD][MAX_BOARD];
|
|
unsigned int X_hash[8][MAX_BOARD][MAX_BOARD];
|
|
unsigned int move_hash[8][MAX_BOARD][MAX_BOARD];
|
|
|
|
/* A board is hashed 8 times, once for each transformation, and these
|
|
* numbers are sorted into a transformation invariant hash.
|
|
*/
|
|
struct invariant_hash {
|
|
unsigned int values[8];
|
|
};
|
|
|
|
/* This is defined in engine/matchpat.c */
|
|
extern const int transformations[8][2][2];
|
|
|
|
|
|
/* A situation is the combination of a board position and the move to
|
|
* be made. We use the invariant hashes excluding and including the move
|
|
* as identification. If are interested in positions, we only use the first
|
|
* hash value.
|
|
*
|
|
* We ignore the possibility of a hash collision.
|
|
*
|
|
* outcome is the color which won the game
|
|
* player is the (hashed) name of the player who made the move
|
|
*/
|
|
struct situation {
|
|
struct invariant_hash pre;
|
|
struct invariant_hash post;
|
|
int outcome;
|
|
unsigned int player;
|
|
};
|
|
|
|
/* Dynamically allocated table of situations encountered in the analysis. */
|
|
struct situation *situation_table;
|
|
int number_of_situations;
|
|
|
|
/* Data type for frequencies of e.g. situations or positions. 'index'
|
|
* is the index into situation_table.
|
|
*/
|
|
struct frequency {
|
|
int index;
|
|
int n;
|
|
int n_win;
|
|
int n_player;
|
|
};
|
|
|
|
/* Position frequency table. */
|
|
struct frequency *frequency_table;
|
|
int number_of_distinct_positions;
|
|
|
|
/* The most common situations are called winners. These are the ones
|
|
* we generate patterns for.
|
|
*
|
|
* 'index' is normally an index into situation_table, or -1 for
|
|
* special aggregate entry (with no pattern) to collect stats for
|
|
* unpopular moves
|
|
*
|
|
* pre is hash[0], and must be stored here for aggregate
|
|
*/
|
|
struct winner {
|
|
int index;
|
|
unsigned int pre;
|
|
int position_frequency;
|
|
int move_frequency;
|
|
int n_player;
|
|
int position_success;
|
|
int move_success;
|
|
char pattern[MAX_BOARD][MAX_BOARD];
|
|
};
|
|
|
|
/* Dynamically allocated table of winners. */
|
|
struct winner *winning_moves;
|
|
int number_of_winning_moves;
|
|
|
|
/* critical values of chisquare distribution with n degrees of freedom */
|
|
/* p < 0.05
|
|
*/
|
|
double chisquarecrit05[] = {
|
|
3.8415, 5.9915, 7.8147, 9.4877, 11.0705, 12.5916, 14.0671, 15.5073,
|
|
16.9190, 18.3070, 19.6751, 21.0261, 22.3620, 23.6848, 24.9958, 26.2962,
|
|
27.5871, 28.8693, 30.1435, 31.4104, 32.67057, 33.92444, 35.17246,
|
|
36.41503, 37.65248, 38.88514, 40.11327, 41.33714, 42.55697, 43.77297,
|
|
44.98534, 46.19426, 47.39988, 48.60237, 49.80185, 50.99846, 52.19232,
|
|
53.38354, 54.57223, 55.75848, 56.94239, 58.12404, 59.30351, 60.48089,
|
|
61.65623, 62.82962, 64.00111, 65.17077, 66.33865, 67.50481};
|
|
|
|
/* p < 0.10, should be same size as 05 */
|
|
double chisquarecrit10[] = {
|
|
2.7055, 4.6052, 6.2514, 7.7794, 9.2364, 10.6446, 12.0170, 13.3616,
|
|
14.6837, 15.9872, 17.2750, 18.5493, 19.8119, 21.0641, 22.3071, 23.5418,
|
|
24.7690, 25.9894, 27.2036, 28.4120, 29.61509, 30.81328, 32.00690,
|
|
33.19624, 34.38159, 35.56317, 36.74122, 37.91592, 39.08747, 40.25602,
|
|
41.42174, 42.58475, 43.74518, 44.90316, 46.05879, 47.21217, 48.36341,
|
|
49.51258, 50.65977, 51.80506, 52.94851, 54.09020, 55.23019, 56.36854,
|
|
57.50530, 58.64054, 59.77429, 60.90661, 62.03754, 63.16712};
|
|
|
|
double chisquarecrit01[] = {
|
|
6.63489660102121, 9.21034037197618, 11.3448667301444, 13.2767041359876,
|
|
15.086272469389, 16.8118938297709, 18.4753069065824, 20.0902350296632,
|
|
21.6659943334619, 23.2092511589544, 24.7249703113183, 26.2169673055359,
|
|
27.6882496104570, 29.1412377406728, 30.5779141668925, 31.9999269088152,
|
|
33.4086636050046, 34.8053057347051, 36.1908691292701, 37.5662347866250,
|
|
38.9321726835161, 40.2893604375938, 41.6383981188585, 42.9798201393516,
|
|
44.3141048962192, 45.6416826662832, 46.9629421247514, 48.2782357703155,
|
|
49.5878844728988, 50.8921813115171, 52.1913948331919, 53.4857718362354,
|
|
54.7755397601104, 56.0609087477891, 57.3420734338592, 58.619214501687,
|
|
59.8925000450869, 61.1620867636897, 62.4281210161849, 63.6907397515645,
|
|
64.9500713352112, 66.2062362839932, 67.4593479223258, 68.7095129693454,
|
|
69.9568320658382, 71.2014002483115, 72.4433073765482, 73.6826385201058,
|
|
74.9194743084782, 76.1538912490127};
|
|
|
|
double chisquarecrit001[] = {
|
|
10.8275661706627, 13.8155105579643, 16.2662361962381, 18.4668269529032,
|
|
20.5150056524329, 22.4577444848253, 24.3218863478569, 26.1244815583761,
|
|
27.8771648712566, 29.5882984450744, 31.26413362024, 32.9094904073602,
|
|
34.5281789748709, 36.1232736803981, 37.6972982183538, 39.2523547907685,
|
|
40.7902167069025, 42.31239633168, 43.8201959645175, 45.3147466181259,
|
|
46.7970380415613, 48.2679422908352, 49.7282324664315, 51.1785977773774,
|
|
52.6196557761728, 54.0519623885766, 55.4760202057452, 56.8922853933536,
|
|
58.3011734897949, 59.7030643044299, 61.0983060810581, 62.4872190570885,
|
|
63.870098522345, 65.2472174609424, 66.618828843701, 67.9851676260242,
|
|
69.3464524962412, 70.702887411505, 72.0546629519878, 73.401957518991,
|
|
74.7449383984238, 76.0837627077, 77.418578241314, 78.749524228043,
|
|
80.076732010819, 81.40032565871, 82.720422519124, 84.0371337172235,
|
|
85.350564608593, 86.6608151904032};
|
|
|
|
/*
|
|
* Append the files that are sorted to a specific file
|
|
*/
|
|
|
|
static void
|
|
write_sgf_filenames(const char *name, char *filenames[])
|
|
{
|
|
int n;
|
|
FILE *namefile = fopen(name, "a");
|
|
if (!namefile) {
|
|
fprintf(stderr, "Fatal error, couldn't open %s.\n", name);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
for (n = 0; n < number_of_games; n++) {
|
|
if (unused_games[n] == 0)
|
|
fprintf(namefile, "%s\n", filenames[n]);
|
|
}
|
|
}
|
|
|
|
|
|
/* Read the sgf file names. These are assumed to be stored one per
|
|
* line in the file with the name given by 'name'. The sgf file names
|
|
* are copied into dynamically allocated memory by strdup() and
|
|
* pointers to the names are stored into the 'filenames[]' array. It
|
|
* is assumed that 'filenames' has been allocated sufficiently large
|
|
* before this this function is called. If 'filenames' is NULL, the
|
|
* sgf file names are only counted. The number of sgf file names is
|
|
* returned.
|
|
*/
|
|
static int
|
|
read_sgf_filenames(const char *name, char *filenames[])
|
|
{
|
|
int n;
|
|
char buf[BUFSIZE];
|
|
FILE *namefile = fopen(name, "r");
|
|
if (!namefile) {
|
|
fprintf(stderr, "Fatal error, couldn't open %s.\n", name);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
n = 0;
|
|
while (fgets(buf, BUFSIZE, namefile) != NULL) {
|
|
if (filenames != NULL) {
|
|
if (buf[strlen(buf) - 2] == '\r') {
|
|
buf[strlen(buf) - 2] = '\0';
|
|
/* Delete carriage return character, if any. */
|
|
}
|
|
else {
|
|
buf[strlen(buf) - 1] = '\0';
|
|
/* Delete newline character. */
|
|
}
|
|
|
|
filenames[n] = strdup(buf);
|
|
if (filenames[n] == NULL) {
|
|
fprintf(stderr, "Fatal error, strdup() failed.\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
n++;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
/* Fill one of the zobrist hash tables with random numbers. */
|
|
static void
|
|
init_zobrist_table(unsigned int hash[8][MAX_BOARD][MAX_BOARD])
|
|
{
|
|
unsigned int k;
|
|
int m, n;
|
|
int i, j;
|
|
int mid = board_size/2;
|
|
|
|
for (m = 0; m < board_size; m++)
|
|
for (n = 0; n < board_size; n++) {
|
|
hash[0][m][n] = 0;
|
|
for (k = 0; 32*k < CHAR_BIT*sizeof(hash[0][0][0]); k++)
|
|
hash[0][m][n] |= gg_urand() << k*32;
|
|
}
|
|
|
|
/* Fill in all transformations of the hash table. */
|
|
for (k = 1; k < 8; k++)
|
|
for (m = 0; m < board_size; m++)
|
|
for (n = 0; n < board_size; n++) {
|
|
TRANSFORM2(m-mid, n-mid, &i, &j, k);
|
|
hash[k][m][n] = hash[0][i+mid][j+mid];
|
|
}
|
|
|
|
/* Debug output. */
|
|
if (0) {
|
|
for (k = 0; k < 8; k++) {
|
|
for (m = 0; m < board_size; m++) {
|
|
for (n = 0; n < board_size; n++)
|
|
fprintf(stderr, "%8x ", hash[k][m][n]);
|
|
fprintf(stderr, "\n");
|
|
}
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Initialize all Zobrist hash tables with random numbers. */
|
|
static void
|
|
init_zobrist_numbers(void)
|
|
{
|
|
gg_srand(1);
|
|
init_zobrist_table(O_hash);
|
|
init_zobrist_table(X_hash);
|
|
init_zobrist_table(move_hash);
|
|
}
|
|
|
|
/* Initialize the situation_table array. */
|
|
static void
|
|
init_situations(void)
|
|
{
|
|
situation_table = calloc(moves_per_game * number_of_games,
|
|
sizeof(*situation_table));
|
|
if (!situation_table) {
|
|
fprintf(stderr, "Fatal error, failed to allocate situations table.\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
number_of_situations = 0;
|
|
}
|
|
|
|
/* Compare two hash values. Used for sorting the hash values in the
|
|
* invariant hash.
|
|
*/
|
|
static int
|
|
compare_numbers(const void *a, const void *b)
|
|
{
|
|
unsigned int aa = *((const unsigned int *) a);
|
|
unsigned int bb = *((const unsigned int *) b);
|
|
if (aa > bb)
|
|
return 1;
|
|
if (aa < bb)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
/* Compute hash values for all transformations of the position
|
|
* currently in the p[][] array. The hash values are not sorted by
|
|
* this function.
|
|
*/
|
|
static void
|
|
common_hash_board(struct invariant_hash *hash, int color_to_play)
|
|
{
|
|
int m, n;
|
|
int k;
|
|
|
|
for (k = 0; k < 8; k++)
|
|
hash->values[k] = 0;
|
|
|
|
for (m = 0; m < board_size; m++)
|
|
for (n = 0; n < board_size; n++) {
|
|
for (k = 0; k < 8; k++) {
|
|
if (BOARD(m, n) == color_to_play)
|
|
hash->values[k] ^= O_hash[k][m][n];
|
|
else if (BOARD(m, n) != EMPTY)
|
|
hash->values[k] ^= X_hash[k][m][n];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Compute invariant hash for the current position. */
|
|
static void
|
|
hash_board(struct invariant_hash *hash, int color_to_play)
|
|
{
|
|
common_hash_board(hash, color_to_play);
|
|
/* Sort the 8 hash values. */
|
|
gg_sort(hash->values, 8, sizeof(hash->values[0]), compare_numbers);
|
|
}
|
|
|
|
/* Compute invariant hash for the current situation, i.e. position
|
|
* plus a move to be made.
|
|
*/
|
|
static void
|
|
hash_board_and_move(struct invariant_hash *hash, int color_to_play,
|
|
int m, int n)
|
|
{
|
|
int k;
|
|
|
|
common_hash_board(hash, color_to_play);
|
|
|
|
for (k = 0; k < 8; k++)
|
|
hash->values[k] ^= move_hash[k][m][n];
|
|
|
|
/* Notice that we of course must wait with sorting until we have
|
|
* added the move to the hash values.
|
|
*/
|
|
gg_sort(hash->values, 8, sizeof(hash->values[0]), compare_numbers);
|
|
}
|
|
|
|
|
|
/* the so called X31 hash from gtk, for hashing strings */
|
|
static unsigned int
|
|
hash_string(const char *v)
|
|
{
|
|
unsigned int h = 0;
|
|
while (*v != '\0') {
|
|
h = (h << 5) - h + *v;
|
|
v++;
|
|
}
|
|
return h;
|
|
}
|
|
|
|
/* Adapted from play_sgf_tree() in engine/sgfutils.c. Returns the
|
|
* next move from the game record in (*m, *n) and color in *color. If
|
|
* handicap stones are encountered, these are put on the board
|
|
* immediately. Return value is 1 if another move was found in the
|
|
* game record, 0 otherwise.
|
|
*/
|
|
static int
|
|
get_move_from_sgf(SGFNode *node, int *m, int *n, int *color)
|
|
{
|
|
SGFProperty *prop;
|
|
int i, j;
|
|
|
|
for (prop = node->props; prop; prop = prop->next) {
|
|
if (!prop || !prop->name || !node) {
|
|
/* something wrong with the SGF file properties */
|
|
if (1)
|
|
fprintf(stderr, "Something wrong with the SGF file properties.\n");
|
|
return 0;
|
|
}
|
|
switch (prop->name) {
|
|
case SGFAB:
|
|
get_moveXY(prop, &i, &j, board_size);
|
|
/* Put handicap stones on the board at once. */
|
|
add_stone(POS(i, j), BLACK);
|
|
break;
|
|
|
|
case SGFAW:
|
|
if (0)
|
|
fprintf(stderr, "Warning: white stone added.\n");
|
|
return 0;
|
|
break;
|
|
|
|
case SGFPL:
|
|
if (0)
|
|
fprintf(stderr, "Warning: PL property encountered.\n");
|
|
return 0;
|
|
break;
|
|
|
|
case SGFW:
|
|
case SGFB:
|
|
*color = (prop->name == SGFW) ? WHITE : BLACK;
|
|
|
|
if (!get_moveXY(prop, m, n, board_size)) {
|
|
if (0)
|
|
fprintf(stderr, "Warning: failed to get move coordinates.\n");
|
|
return 0;
|
|
}
|
|
return 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Add a situation to the situation_table array. */
|
|
static void
|
|
add_situation(struct invariant_hash *pre, struct invariant_hash *post,
|
|
int outcome, unsigned int player)
|
|
{
|
|
situation_table[number_of_situations].pre = *pre;
|
|
situation_table[number_of_situations].post = *post;
|
|
situation_table[number_of_situations].outcome = outcome;
|
|
situation_table[number_of_situations].player = player;
|
|
number_of_situations++;
|
|
}
|
|
|
|
/* Compare two situations. Used (indirectly, see compare_situations2)
|
|
* for sorting the situation_table array
|
|
* and when building frequency tables for the different moves at the
|
|
* same position.
|
|
*/
|
|
static int
|
|
compare_situations(const void *a, const void *b)
|
|
{
|
|
const struct situation *aa = a;
|
|
const struct situation *bb = b;
|
|
int k;
|
|
|
|
for (k = 0; k < 8; k++) {
|
|
if (aa->pre.values[k] > bb->pre.values[k])
|
|
return 1;
|
|
if (aa->pre.values[k] < bb->pre.values[k])
|
|
return -1;
|
|
}
|
|
|
|
for (k = 0; k < 8; k++) {
|
|
if (aa->post.values[k] > bb->post.values[k])
|
|
return 1;
|
|
if (aa->post.values[k] < bb->post.values[k])
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
compare_situations2(const void *a, const void *b)
|
|
{
|
|
const struct situation *aa = a;
|
|
const struct situation *bb = b;
|
|
int r = compare_situations(a, b);
|
|
if (r != 0)
|
|
return r;
|
|
if (aa->player > bb->player)
|
|
return 1;
|
|
if (aa->player < bb->player)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Compare two positions. Used when building frequency table for the
|
|
* different positions encountered.
|
|
*/
|
|
static int
|
|
compare_positions(const void *a, const void *b)
|
|
{
|
|
const struct situation *aa = a;
|
|
const struct situation *bb = b;
|
|
int k;
|
|
|
|
for (k = 0; k < 8; k++) {
|
|
if (aa->pre.values[k] > bb->pre.values[k])
|
|
return 1;
|
|
if (aa->pre.values[k] < bb->pre.values[k])
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Compare two frequency table entries. The returned values are
|
|
* "backwards" because we always want to sort frequencies in falling
|
|
* order.
|
|
*
|
|
* The first version counts every game equally, the second version
|
|
* counts a game only once per unique player.
|
|
*/
|
|
static int
|
|
compare_frequencies(const void *a, const void *b)
|
|
{
|
|
const struct frequency *aa = a;
|
|
const struct frequency *bb = b;
|
|
|
|
if (aa->n < bb->n)
|
|
return 1;
|
|
|
|
if (aa->n > bb->n)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
compare_frequencies2(const void *a, const void *b)
|
|
{
|
|
const struct frequency *aa = a;
|
|
const struct frequency *bb = b;
|
|
|
|
if (aa->n_player < bb->n_player)
|
|
return 1;
|
|
|
|
if (aa->n_player > bb->n_player)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* find_region answers in what region the move is.
|
|
* There are 9 regions, corners, sides and center.
|
|
*/
|
|
|
|
static int
|
|
find_region(int m, int n)
|
|
{
|
|
if (m < 7) {
|
|
if (n < 7)
|
|
return 0;
|
|
else if (n > 11)
|
|
return 1;
|
|
else if (n > 6 && m < 5)
|
|
return 6;
|
|
}
|
|
else if (m > 11) {
|
|
if (n < 7)
|
|
return 2;
|
|
else if (n > 11)
|
|
return 3;
|
|
else if (n > 6 && m > 13)
|
|
return 7;
|
|
}
|
|
else if (m > 6) {
|
|
if (n < 5)
|
|
return 4;
|
|
else if (n > 13)
|
|
return 5;
|
|
}
|
|
/* otherwise in center */
|
|
return 8;
|
|
}
|
|
|
|
/* If this situation is listed among the winners, fill in the pattern
|
|
* entry of the winner struct.
|
|
*/
|
|
static void
|
|
store_pattern_if_winner(struct invariant_hash *pre,
|
|
struct invariant_hash *post,
|
|
int color, int m, int n)
|
|
{
|
|
int k;
|
|
struct situation s;
|
|
int region = 8;
|
|
int i, j;
|
|
int move_number = 1;
|
|
s.pre = *pre;
|
|
s.post = *post;
|
|
|
|
for (k = 0; k < number_of_winning_moves; k++) {
|
|
if (winning_moves[k].index != -1
|
|
&& compare_situations(&situation_table[winning_moves[k].index],
|
|
&s) == 0) {
|
|
/* This is a winner. Record the pattern. */
|
|
for (i = 0; i < board_size; i++)
|
|
for (j = 0; j < board_size; j++) {
|
|
if (BOARD(i, j) == EMPTY)
|
|
winning_moves[k].pattern[i][j] = '.';
|
|
else if (BOARD(i, j) == color) {
|
|
winning_moves[k].pattern[i][j] = 'O';
|
|
move_number++;
|
|
}
|
|
else if ((color == WHITE && BOARD(i, j) == BLACK)
|
|
|| (color == BLACK && BOARD(i, j) == WHITE)) {
|
|
winning_moves[k].pattern[i][j] = 'X';
|
|
move_number++;
|
|
}
|
|
else { /* something is wrong */
|
|
fprintf(stderr, "Error in store_pattern_if_winner: %d\n", k);
|
|
winning_moves[k].pattern[i][j] = '.';
|
|
}
|
|
}
|
|
winning_moves[k].pattern[m][n] = '*';
|
|
/* Add ? in areas far away from the move. */
|
|
if (half_board_patterns == 1 && move_number > 3 && board_size == 19)
|
|
region = find_region(m, n);
|
|
if (region != 8) {
|
|
for (i = 0; i < board_size; i++) {
|
|
for (j = 0; j < board_size; j++) {
|
|
if (region == 0) {
|
|
if (i + j > 23)
|
|
winning_moves[k].pattern[i][j] = '?';
|
|
}
|
|
else if (region == 1) {
|
|
if (i - j > 5)
|
|
winning_moves[k].pattern[i][j] = '?';
|
|
}
|
|
else if (region == 2) {
|
|
if (i + board_size - j < 14)
|
|
winning_moves[k].pattern[i][j] = '?';
|
|
}
|
|
else if (region == 3) {
|
|
if (i + j < 13)
|
|
winning_moves[k].pattern[i][j] = '?';
|
|
}
|
|
else if (region == 4) {
|
|
if (j > 10)
|
|
winning_moves[k].pattern[i][j] = '?';
|
|
}
|
|
else if (region == 5) {
|
|
if (j < 8)
|
|
winning_moves[k].pattern[i][j] = '?';
|
|
}
|
|
else if (region == 6) {
|
|
if (i > 10)
|
|
winning_moves[k].pattern[i][j] = '?';
|
|
}
|
|
else if (region == 7) {
|
|
if (i < 8)
|
|
winning_moves[k].pattern[i][j] = '?';
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Play through the initial moves of a game. If 'collect_statistics'
|
|
* is set, store all encountered situations in the situation_table
|
|
* array. 'collect_statistics' will be set to the color which won the
|
|
* game. Otherwise, see if there are any winners among the situations
|
|
* and store the corresponding pattern so that it can subsequently be
|
|
* printed. Return 0 if there was some problem with the game record,
|
|
* e.g. fewer moves than expected.
|
|
*/
|
|
static int
|
|
examine_game(SGFNode *sgf, int collect_statistics)
|
|
{
|
|
int k;
|
|
int m, n;
|
|
SGFNode *node = sgf;
|
|
struct invariant_hash prehash;
|
|
struct invariant_hash posthash;
|
|
int color;
|
|
char *PW, *PB;
|
|
unsigned int white_player, black_player;
|
|
|
|
if (!sgfGetCharProperty(sgf, "PW", &PW))
|
|
white_player = hash_string("");
|
|
else
|
|
white_player = hash_string(PW);
|
|
|
|
if (!sgfGetCharProperty(sgf, "PB", &PB))
|
|
black_player = hash_string("");
|
|
else
|
|
black_player = hash_string(PB);
|
|
|
|
/* Call the engine to clear the board. */
|
|
clear_board();
|
|
|
|
/* Loop through the first moves_per_game moves of each game. */
|
|
for (k = 0; k < moves_per_game && node != NULL; node = node->child) {
|
|
if (!get_move_from_sgf(node, &m, &n, &color)) {
|
|
if (k > 0) {
|
|
/* something is wrong with the file */
|
|
if (0)
|
|
fprintf(stderr, "move number:%d\n", k);
|
|
return 0;
|
|
}
|
|
continue;
|
|
}
|
|
gg_assert(m >= 0 && m < board_size && n >= 0 && n <= board_size);
|
|
hash_board(&prehash, color);
|
|
hash_board_and_move(&posthash, color, m, n);
|
|
if (collect_statistics != EMPTY)
|
|
add_situation(&prehash, &posthash, collect_statistics == color,
|
|
color == WHITE ? white_player : black_player);
|
|
else
|
|
store_pattern_if_winner(&prehash, &posthash, color, m, n);
|
|
play_move(POS(m, n), color);
|
|
|
|
/* Debug output. */
|
|
if (0) {
|
|
int l;
|
|
for (l = 0; l < 8; l++)
|
|
fprintf(stderr, "%8x ", prehash.values[l]);
|
|
fprintf(stderr, " ");
|
|
for (l = 0; l < 8; l++)
|
|
fprintf(stderr, "%8x ", posthash.values[l]);
|
|
fprintf(stderr, "\n");
|
|
showboard(0);
|
|
}
|
|
k++;
|
|
}
|
|
if (!node) {
|
|
if (0)
|
|
fprintf(stderr, "Node error\n");
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Tests if the player has enough strength in the game to be interesting
|
|
* for the library
|
|
*/
|
|
|
|
static int
|
|
enough_strength(char *strength)
|
|
{
|
|
int length = 0;
|
|
int i = 0;
|
|
int kyu = 30;
|
|
if (player_strength >= 30)
|
|
return 1;
|
|
|
|
length = strlen(strength);
|
|
/* check if dan or pro player */
|
|
for (i = 0; i < length; i++)
|
|
if (strength[i] == 'd' || strength[i] == 'D'
|
|
|| strength[i] == 'p' || strength[i] == 'P')
|
|
return 1;
|
|
|
|
/* get the kyu strength as an integer */
|
|
for (i = 0; i < length; i++) {
|
|
if (strength[i] == 'k')
|
|
strength[i] = '\0';
|
|
kyu = atoi(strength);
|
|
if (kyu == 0) {
|
|
if (player_strength >= 30)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (kyu <= player_strength)
|
|
return 1;
|
|
|
|
/* not enough strength */
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* used by both sort_games and collect_situations to
|
|
* check validity of a game record
|
|
* 0 means failure for any reason
|
|
* 1 means probably okay, without going through moves
|
|
*/
|
|
static int
|
|
check_game(SGFNode *sgf, char *sgfname)
|
|
{
|
|
int handicap, size;
|
|
char *WR, *BR; /* white rank */
|
|
char thirty_kyu[] = "30k";
|
|
char *RE;
|
|
|
|
size = 19;
|
|
if (!sgfGetIntProperty(sgf, "SZ", &size)) {
|
|
if (WARN > 1)
|
|
fprintf(stderr, "Warning: no SZ in sgf file %s , assuming size %d\n",
|
|
sgfname, size);
|
|
}
|
|
if (size != board_size) {
|
|
if (WARN)
|
|
fprintf(stderr, "Warning: wrong size of board %d in sgf file %s .\n",
|
|
size, sgfname);
|
|
return 0;
|
|
}
|
|
|
|
/* No handicap games */
|
|
if (handicap_value == 0) {
|
|
if (sgfGetIntProperty(sgf, "HA", &handicap) && handicap > 1) {
|
|
if (WARN)
|
|
fprintf(stderr,
|
|
"No handicap games allowed, sgf file %s has handicap %d\n",
|
|
sgfname, handicap);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Only handicap games */
|
|
if (handicap_value > 1) {
|
|
if (!sgfGetIntProperty(sgf, "HA", &handicap)) {
|
|
if (WARN)
|
|
fprintf(stderr, "Sgf file %s is not a handicap game\n", sgfname);
|
|
return 0;
|
|
}
|
|
|
|
/* only specific handicap games */
|
|
if (handicap_value != 10 && handicap != handicap_value) {
|
|
if (WARN)
|
|
fprintf(stderr,
|
|
"Sgf file %s has wrong number of handicap stones %d\n",
|
|
sgfname, handicap);
|
|
return 0;
|
|
}
|
|
|
|
/* any reasonable handicap games */
|
|
if (handicap_value == 10 && (handicap < 2 || handicap > 9)) {
|
|
if (WARN)
|
|
fprintf(stderr,
|
|
"Sgf file %s has wrong/weird number of handicap stones %d\n",
|
|
sgfname, handicap);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Examine strength of players in the game and compare it
|
|
* with minimum player strength.
|
|
*/
|
|
|
|
BR = thirty_kyu;
|
|
if (!sgfGetCharProperty(sgf, "BR", &BR)) {
|
|
if (WARN > 1)
|
|
fprintf(stderr, "No black strength in sgf file %s assuming %s\n",
|
|
sgfname, BR);
|
|
}
|
|
if (!enough_strength(BR)) {
|
|
if (WARN)
|
|
fprintf(stderr, "Wrong black strength %s in sgf file %s\n", BR, sgfname);
|
|
return 0;
|
|
}
|
|
|
|
WR = thirty_kyu;
|
|
if (!sgfGetCharProperty(sgf, "WR", &WR)) {
|
|
if (WARN > 1)
|
|
fprintf(stderr, "No white strength in sgf file %s assuming %s\n",
|
|
sgfname, WR);
|
|
}
|
|
if (!enough_strength(WR)) {
|
|
if (WARN)
|
|
fprintf(stderr, "Wrong white strength %s in sgf file %s\n", WR, sgfname);
|
|
return 0;
|
|
}
|
|
|
|
/* Must have result. */
|
|
if (!sgfGetCharProperty(sgf, "RE", &RE)) {
|
|
if (WARN)
|
|
fprintf(stderr, "No result in game %s\n", sgfname);
|
|
return 0;
|
|
}
|
|
|
|
if (strncmp(RE, "B+", 2) != 0 && strncmp(RE, "W+", 2) != 0) {
|
|
if (WARN)
|
|
fprintf(stderr, "Couldn't parse winner in result %s from game %s\n",
|
|
RE, sgfname);
|
|
return 0;
|
|
}
|
|
|
|
/* Looks okay. */
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Sort out the games that can be used.
|
|
*/
|
|
|
|
static void
|
|
sort_games(void)
|
|
{
|
|
int k;
|
|
|
|
for (k = 0; k < number_of_games; k++) {
|
|
SGFNode *sgf;
|
|
|
|
/* Progress output. */
|
|
if (k % 500 == 0)
|
|
fprintf(stderr, "Sorting number %d, %s\n", k, sgf_names[k]);
|
|
|
|
sgf = readsgffilefuseki(sgf_names[k], 0);
|
|
|
|
|
|
if (!sgf) {
|
|
if (WARN)
|
|
fprintf(stderr, "Warning: Couldn't open sgf file %s number %d.\n",
|
|
sgf_names[k], k);
|
|
unused_games[k] = 1; /* the game could not be used */
|
|
continue;
|
|
}
|
|
|
|
if (!check_game(sgf, sgf_names[k]))
|
|
unused_games[k] = 1;
|
|
|
|
/* Free memory of SGF file */
|
|
sgfFreeNode(sgf);
|
|
}
|
|
}
|
|
|
|
|
|
/* Play through the initial moves of all games and collect hash values
|
|
* for the encountered situations.
|
|
*/
|
|
static void
|
|
collect_situations(void)
|
|
{
|
|
int k;
|
|
int winner; /* who won the game in question */
|
|
|
|
init_situations();
|
|
for (k = 0; k < number_of_games; k++) {
|
|
SGFNode *sgf;
|
|
char *RE;
|
|
|
|
/* Progress output. */
|
|
if (k % 500 == 0)
|
|
fprintf(stderr, "Reading number %d, %s\n", k, sgf_names[k]);
|
|
|
|
sgf = readsgffilefuseki(sgf_names[k], moves_per_game);
|
|
|
|
if (!sgf) {
|
|
if (WARN)
|
|
fprintf(stderr, "Warning: Couldn't open sgf file %s.\n", sgf_names[k]);
|
|
unused_games[k] = 1; /* the game could not be used */
|
|
continue;
|
|
}
|
|
|
|
if (!check_game(sgf, sgf_names[k])) {
|
|
unused_games[k] = 1;
|
|
sgfFreeNode(sgf);
|
|
continue;
|
|
}
|
|
|
|
if (!sgfGetCharProperty(sgf, "RE", &RE)) {
|
|
gg_assert(0);
|
|
}
|
|
|
|
if (strncmp(RE, "B+", 2) == 0)
|
|
winner = BLACK;
|
|
else if (strncmp(RE, "W+", 2) == 0)
|
|
winner = WHITE;
|
|
else {
|
|
gg_assert(0);
|
|
}
|
|
|
|
if (!examine_game(sgf, winner)) {
|
|
if (WARN)
|
|
fprintf(stderr, "Warning: Problem with sgf file %s\n", sgf_names[k]);
|
|
unused_games[k] = 1; /* the game could not be used */
|
|
}
|
|
|
|
/* Free memory of SGF file */
|
|
sgfFreeNode(sgf);
|
|
}
|
|
}
|
|
|
|
/* Find the most common positions and moves, for which we want to
|
|
* generate patterns.
|
|
*/
|
|
static void
|
|
analyze_statistics(void)
|
|
{
|
|
int k;
|
|
/* Sort all the collected situations. */
|
|
gg_sort(situation_table, number_of_situations, sizeof(*situation_table),
|
|
compare_situations2);
|
|
|
|
/* Debug output. */
|
|
if (0) {
|
|
int i, k;
|
|
for (i = 0; i < number_of_situations; i++) {
|
|
fprintf(stderr, "%4d ", i);
|
|
for (k = 0; k < 8; k++)
|
|
fprintf(stderr, "%8x ", situation_table[i].pre.values[k]);
|
|
fprintf(stderr, " ");
|
|
for (k = 0; k < 8; k++)
|
|
fprintf(stderr, "%8x ", situation_table[i].post.values[k]);
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
|
|
/* Set up frequency table. */
|
|
frequency_table = calloc(number_of_situations, sizeof(*frequency_table));
|
|
if (!frequency_table) {
|
|
fprintf(stderr, "Fatal error, failed to allocate frequency table.\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
number_of_distinct_positions = 0;
|
|
|
|
/* Make frequency analysis of the positions before the moves. */
|
|
for (k = 0; k < number_of_situations; k++) {
|
|
if (k == 0 || compare_positions(&situation_table[k],
|
|
&situation_table[k-1]) != 0) {
|
|
frequency_table[number_of_distinct_positions].index = k;
|
|
frequency_table[number_of_distinct_positions].n = 0;
|
|
frequency_table[number_of_distinct_positions].n_win = 0;
|
|
frequency_table[number_of_distinct_positions].n_player = 0;
|
|
number_of_distinct_positions++;
|
|
}
|
|
frequency_table[number_of_distinct_positions-1].n++;
|
|
frequency_table[number_of_distinct_positions-1].n_win += situation_table[k].outcome;
|
|
if (frequency_table[number_of_distinct_positions-1].n == 1
|
|
|| situation_table[k].player != situation_table[k-1].player)
|
|
frequency_table[number_of_distinct_positions-1].n_player++;
|
|
}
|
|
|
|
/* Sort the frequency table, in falling order. */
|
|
gg_sort(frequency_table, number_of_distinct_positions,
|
|
sizeof(*frequency_table), compare_frequencies);
|
|
|
|
/* Debug output. */
|
|
if (0) {
|
|
int l;
|
|
for (l = 0; l < number_of_distinct_positions; l++) {
|
|
fprintf(stderr, "%4d %5d\n", frequency_table[l].n,
|
|
frequency_table[l].index);
|
|
}
|
|
}
|
|
|
|
/* Set up winners array. */
|
|
winning_moves = calloc(MAX_PATTERNS_TO_EXTRACT, sizeof(*winning_moves));
|
|
if (!winning_moves) {
|
|
fprintf(stderr, "Fatal error, failed to allocate winning moves table.\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
number_of_winning_moves = 0;
|
|
|
|
/* Starting with the most common position, find the most common
|
|
* moves for each position, until the number of patterns to be
|
|
* generated is reached.
|
|
*/
|
|
for (k = 0; k < number_of_distinct_positions; k++) {
|
|
int index = frequency_table[k].index;
|
|
int i;
|
|
|
|
/* Build a new frequency table for the different moves in this position. */
|
|
struct frequency move_frequencies[MAX_BOARD * MAX_BOARD];
|
|
int number_of_moves = 0;
|
|
|
|
/* A position must occur a minimum before we analyze and record
|
|
* the moves from it.
|
|
*/
|
|
if (frequency_table[k].n < min_position_freq)
|
|
break;
|
|
|
|
for (i = index; ;i++) {
|
|
if (i == number_of_situations
|
|
|| (i > index
|
|
&& compare_positions(&situation_table[i],
|
|
&situation_table[i-1]) != 0))
|
|
break;
|
|
|
|
if (i == index || compare_situations(&situation_table[i],
|
|
&situation_table[i-1]) != 0) {
|
|
move_frequencies[number_of_moves].index = i;
|
|
move_frequencies[number_of_moves].n = 0;
|
|
move_frequencies[number_of_moves].n_win = 0;
|
|
move_frequencies[number_of_moves].n_player = 0;
|
|
number_of_moves++;
|
|
}
|
|
move_frequencies[number_of_moves-1].n++;
|
|
move_frequencies[number_of_moves-1].n_win += situation_table[i].outcome;
|
|
|
|
if (move_frequencies[number_of_moves-1].n == 1
|
|
|| situation_table[i].player != situation_table[i-1].player)
|
|
move_frequencies[number_of_moves-1].n_player++;
|
|
}
|
|
|
|
/* Sort the moves, in falling order. */
|
|
gg_sort(move_frequencies, number_of_moves,
|
|
sizeof(*move_frequencies), compare_frequencies2);
|
|
|
|
/* Debug output. */
|
|
if (0) {
|
|
for (i = 0; i < number_of_moves; i++) {
|
|
fprintf(stderr, "%4d %3d %4d\n", index, move_frequencies[i].n,
|
|
move_frequencies[i].index);
|
|
}
|
|
}
|
|
|
|
/* Add the moves to the list of winners. */
|
|
for (i = 0; i < number_of_moves; i++) {
|
|
/* This is where the cut-off of moves is decided
|
|
* based on popularity from command line arguments.
|
|
*/
|
|
|
|
if (0.01 * min_move_percent*move_frequencies[0].n_player
|
|
> move_frequencies[i].n_player
|
|
|| move_frequencies[i].n_player < min_move_freq) {
|
|
winning_moves[number_of_winning_moves].index = -1;
|
|
winning_moves[number_of_winning_moves].pre =
|
|
situation_table[frequency_table[k].index].pre.values[0];
|
|
winning_moves[number_of_winning_moves].position_frequency =
|
|
frequency_table[k].n;
|
|
winning_moves[number_of_winning_moves].n_player = 0;
|
|
winning_moves[number_of_winning_moves].move_frequency = 0;
|
|
winning_moves[number_of_winning_moves].position_success =
|
|
frequency_table[k].n_win;
|
|
winning_moves[number_of_winning_moves].move_success = 0;
|
|
|
|
while (i < number_of_moves) {
|
|
gg_assert(0.01 * min_move_percent*move_frequencies[0].n_player
|
|
> move_frequencies[i].n_player
|
|
|| move_frequencies[i].n_player < min_move_freq);
|
|
gg_assert(situation_table[move_frequencies[i].index].pre.values[0]
|
|
== winning_moves[number_of_winning_moves].pre);
|
|
winning_moves[number_of_winning_moves].n_player +=
|
|
move_frequencies[i].n_player;
|
|
winning_moves[number_of_winning_moves].move_frequency +=
|
|
move_frequencies[i].n;
|
|
winning_moves[number_of_winning_moves].move_success +=
|
|
move_frequencies[i].n_win;
|
|
i++;
|
|
}
|
|
number_of_winning_moves++;
|
|
continue;
|
|
}
|
|
|
|
winning_moves[number_of_winning_moves].index = move_frequencies[i].index;
|
|
winning_moves[number_of_winning_moves].pre =
|
|
situation_table[frequency_table[k].index].pre.values[0];
|
|
winning_moves[number_of_winning_moves].position_frequency =
|
|
frequency_table[k].n;
|
|
winning_moves[number_of_winning_moves].move_frequency =
|
|
move_frequencies[i].n;
|
|
winning_moves[number_of_winning_moves].n_player =
|
|
move_frequencies[i].n_player;
|
|
|
|
winning_moves[number_of_winning_moves].position_success =
|
|
frequency_table[k].n_win;
|
|
winning_moves[number_of_winning_moves].move_success =
|
|
move_frequencies[i].n_win;
|
|
number_of_winning_moves++;
|
|
|
|
if (number_of_winning_moves == MAX_PATTERNS_TO_EXTRACT)
|
|
break;
|
|
}
|
|
|
|
if (number_of_winning_moves == MAX_PATTERNS_TO_EXTRACT)
|
|
break;
|
|
}
|
|
|
|
/* Debug output. */
|
|
if (0) {
|
|
int i;
|
|
for (i = 0; i < number_of_winning_moves; i++) {
|
|
fprintf(stderr, "%4d %3d %3d\n",
|
|
winning_moves[i].index,
|
|
winning_moves[i].position_frequency,
|
|
winning_moves[i].move_frequency);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Scan through the games a second time to pick up the patterns
|
|
* corresponding to the winning moves.
|
|
*/
|
|
static void
|
|
generate_patterns(void)
|
|
{
|
|
int k;
|
|
SGFNode *sgf;
|
|
for (k = 0; k < number_of_games; k++) {
|
|
|
|
/* Progress output. */
|
|
if (k % 500 == 0)
|
|
fprintf(stderr, "Generating number %d, %s\n", k, sgf_names[k]);
|
|
|
|
/* Check if this game is a valid game. */
|
|
if (unused_games[k]) {
|
|
if (0)
|
|
fprintf(stderr, "Not used\n");
|
|
continue;
|
|
}
|
|
|
|
sgf = readsgffilefuseki(sgf_names[k], moves_per_game);
|
|
if (!sgf) {
|
|
fprintf(stderr, "Warning: Couldn't open sgf file %s.\n", sgf_names[k]);
|
|
continue;
|
|
}
|
|
|
|
examine_game(sgf, 0);
|
|
|
|
/* Free memory of SGF file. */
|
|
sgfFreeNode(sgf);
|
|
}
|
|
}
|
|
|
|
/* Print the winning patterns in patterns.db format on stdout. */
|
|
static void
|
|
print_patterns(void)
|
|
{
|
|
int k, l;
|
|
int m, n;
|
|
double chisq = 0.0;
|
|
int df = 0;
|
|
unsigned int pre = situation_table[winning_moves[0].index].pre.values[0];
|
|
int first_in_set = 0;
|
|
gg_assert(winning_moves[0].index != -1);
|
|
l = 1;
|
|
for (k = 0; k < number_of_winning_moves; k++) {
|
|
/* Do not print erroneous patterns. */
|
|
if (winning_moves[k].pattern[0][0] != '\0'
|
|
|| winning_moves[k].index == -1) {
|
|
double grand_sum = winning_moves[k].position_frequency;
|
|
double grand_wins = winning_moves[k].position_success;
|
|
#if 0
|
|
double grand_losses = grand_sum - grand_wins;
|
|
#endif
|
|
double row_sum = winning_moves[k].move_frequency;
|
|
double wins = winning_moves[k].move_success;
|
|
double losses = row_sum - wins;
|
|
double expect_wins = row_sum*grand_wins/grand_sum;
|
|
double expect_losses = row_sum - expect_wins;
|
|
/* We're _not_ using a Yates corrected chisquare.
|
|
* Two reasons: 1. It's never correct for > 2x2 table
|
|
* 2. Our marginals are sampled, not fixed, so
|
|
* Yates and usual Fisher exact are wrong distribution.
|
|
* Straight chi squared is best.
|
|
*/
|
|
double dchisq = 0.0;
|
|
/* This was Yates line. It's wrong. */
|
|
#if 0
|
|
if (expect_wins > 0.0)
|
|
dchisq += pow(gg_abs(wins - expect_wins) - 0.5, 2) / expect_wins;
|
|
#endif
|
|
|
|
if (expect_wins > 0.0)
|
|
dchisq += pow(wins - expect_wins, 2) / expect_wins;
|
|
if (expect_losses > 0.0)
|
|
dchisq += pow(losses - expect_losses, 2) / expect_losses;
|
|
|
|
gg_assert(winning_moves[k].index == -1
|
|
|| (situation_table[winning_moves[k].index].pre.values[0]
|
|
== winning_moves[k].pre));
|
|
|
|
/* Did we just finish a set? If so, print totals and reset. */
|
|
if (winning_moves[k].pre != pre) {
|
|
/* p-value is 1 - incomplete gamma function(d.o.f/2, chisq/2)
|
|
* variable df is number of moves, actual d.o.f is df-1
|
|
* k is referring to the pattern _after_ the set we just completed.
|
|
*/
|
|
printf("\n### Summary of pattern pre 0x%08x\n### N Chi_squared df: %d %g %d ",
|
|
pre, winning_moves[k-1].position_frequency, chisq, df - 1);
|
|
/* and array is indexed at zero for d.o.f = 1... */
|
|
if (df-1 < 1)
|
|
printf("NS\n\n");
|
|
else if (df - 1 < (int) (sizeof(chisquarecrit05) / sizeof(double))
|
|
&& chisq > chisquarecrit05[df-2]) {
|
|
/* The overall result is significant at 5%. In this case, at
|
|
* least some authorities will allow us to examine several
|
|
* individual contrasts w/o futher correction. We compare
|
|
* every pair of moves, which is perhaps too many, but the
|
|
* purpose is to give the human expert (who would in any
|
|
* case be required to examine the output) some sense of
|
|
* where the differences are. Something like a Bonferroni
|
|
* correction could result in a significant test overall,
|
|
* but no significant contrasts, which is obviously
|
|
* nonsense. The significance of the overall result must
|
|
* come from somewhere.
|
|
*/
|
|
int m, n;
|
|
if (chisq > chisquarecrit001[df-2])
|
|
printf("!!! p < 0.001\n");
|
|
else if (chisq > chisquarecrit01[df-2])
|
|
printf("!!! p < 0.01\n");
|
|
else
|
|
printf("!!! p < 0.05\n");
|
|
for (m = first_in_set; m < k; m++) {
|
|
for (n = m + 1; n < k; n++) {
|
|
double grand_sum = (winning_moves[m].move_frequency
|
|
+ winning_moves[n].move_frequency);
|
|
double grand_wins = (winning_moves[m].move_success
|
|
+ winning_moves[n].move_success);
|
|
#if 0
|
|
double grand_losses = grand_sum - grand_wins;
|
|
#endif
|
|
double row_sum_m = winning_moves[m].move_frequency;
|
|
double row_sum_n = winning_moves[n].move_frequency;
|
|
|
|
double wins_m = winning_moves[m].move_success;
|
|
double losses_m = row_sum_m - wins_m;
|
|
double wins_n = winning_moves[n].move_success;
|
|
double losses_n = row_sum_n - wins_n;
|
|
|
|
double expect_wins_m = row_sum_m * grand_wins/grand_sum;
|
|
double expect_losses_m = row_sum_m - expect_wins_m;
|
|
double expect_wins_n = row_sum_n * grand_wins/grand_sum;
|
|
double expect_losses_n = row_sum_n - expect_wins_n;
|
|
double dchisq_m = 0.0;
|
|
double dchisq_n = 0.0;
|
|
if (expect_wins_m > 0.0)
|
|
dchisq_m += pow(wins_m - expect_wins_m, 2) / expect_wins_m;
|
|
if (expect_losses_m > 0.0)
|
|
dchisq_m += pow(losses_m - expect_losses_m, 2) / expect_losses_m;
|
|
if (expect_wins_n > 0.0)
|
|
dchisq_n += pow(wins_n - expect_wins_n, 2) / expect_wins_n;
|
|
if (expect_losses_n > 0.0)
|
|
dchisq_n += pow(losses_n - expect_losses_n, 2) / expect_losses_n;
|
|
/* We demand at least N=6. Nonsense with smaller N. */
|
|
if (dchisq_m + dchisq_n > chisquarecrit05[0] && grand_sum > 5) {
|
|
printf("#### 0x%08x %c 0x%08x (p < 0.05) chisq = %g N = %g\n",
|
|
situation_table[winning_moves[m].index].post.values[0],
|
|
(1.0 * wins_m / row_sum_m
|
|
> 1.0 * wins_n / row_sum_n) ? '>' : '<',
|
|
situation_table[winning_moves[n].index].post.values[0],
|
|
dchisq_m + dchisq_n, grand_sum);
|
|
}
|
|
}
|
|
}
|
|
printf("\n\n");
|
|
}
|
|
else if (df-1 < (int) (sizeof(chisquarecrit10) / sizeof(double))
|
|
&& chisq > chisquarecrit10[df - 2])
|
|
printf("??? p < 0.10\n\n");
|
|
else if (!(df - 1 < (int) (sizeof(chisquarecrit05) / sizeof(double))))
|
|
printf("df out of range...\n\n");
|
|
else
|
|
printf("NS\n\n");
|
|
|
|
pre = winning_moves[k].pre;
|
|
#if 0
|
|
pre = situation_table[winning_moves[k].index].pre.values[0];
|
|
#endif
|
|
first_in_set = k;
|
|
chisq = 0.0;
|
|
df = 0;
|
|
}
|
|
/* increment totals */
|
|
chisq += dchisq;
|
|
df++;
|
|
|
|
if (winning_moves[k].index == -1) {
|
|
printf("# Unpopular moves\n");
|
|
printf("# pre: 0x%08x\n", winning_moves[k].pre);
|
|
printf("# post: could be various\n");
|
|
printf("# frequency: %d/%d\n",
|
|
winning_moves[k].move_frequency,
|
|
winning_moves[k].position_frequency);
|
|
printf("# unique players: %d\n", winning_moves[k].n_player);
|
|
printf("# wins: %d/%d\n\n",
|
|
winning_moves[k].move_success,
|
|
winning_moves[k].position_success);
|
|
printf("# success: %.1f%% vs %.1f%% for this position overall, dchisq = %g\n\n",
|
|
100.0 * winning_moves[k].move_success / winning_moves[k].move_frequency,
|
|
100.0 * winning_moves[k].position_success / winning_moves[k].position_frequency,
|
|
dchisq);
|
|
}
|
|
else {
|
|
printf("Pattern F-H%d-%d\n", handicap_value, l);
|
|
printf("# pre : 0x%08x\n",
|
|
situation_table[winning_moves[k].index].pre.values[0]);
|
|
printf("# post: 0x%08x\n",
|
|
situation_table[winning_moves[k].index].post.values[0]);
|
|
printf("# frequency: %d/%d\n", winning_moves[k].move_frequency,
|
|
winning_moves[k].position_frequency);
|
|
printf("# unique players: %d\n", winning_moves[k].n_player);
|
|
printf("# wins: %d/%d\n\n", winning_moves[k].move_success,
|
|
winning_moves[k].position_success);
|
|
printf("# success: %.1f%% vs %.1f%% for this position overall, dchisq = %g\n\n",
|
|
100.0 * winning_moves[k].move_success / winning_moves[k].move_frequency,
|
|
100.0 * winning_moves[k].position_success / winning_moves[k].position_frequency,
|
|
dchisq);
|
|
|
|
printf("+");
|
|
for (n = 0; n < board_size; n++)
|
|
printf("-");
|
|
|
|
printf("+\n");
|
|
for (m = 0; m < board_size; m++) {
|
|
printf("|");
|
|
for (n = 0; n < board_size; n++) {
|
|
if (winning_moves[k].pattern[m][n] == '\0') {
|
|
fprintf(stderr, "Something wrong in print pattern\n");
|
|
printf(".");
|
|
}
|
|
else
|
|
printf("%c", winning_moves[k].pattern[m][n]);
|
|
}
|
|
printf("|\n");
|
|
}
|
|
|
|
printf("+");
|
|
for (n = 0; n < board_size; n++)
|
|
printf("-");
|
|
printf("+");
|
|
|
|
printf("\n\n:8,-,value(%d)\n\n\n", winning_moves[k].n_player);
|
|
l++;
|
|
}
|
|
}
|
|
else {
|
|
fprintf(stderr,
|
|
"Skipping pattern pre 0x%08x post 0x%08x, stats may be wrong...\n",
|
|
situation_table[winning_moves[k].index].pre.values[0],
|
|
situation_table[winning_moves[k].index].post.values[0]);
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
main(int argc, char *argv[])
|
|
{
|
|
int number_of_unused_games = 0;
|
|
int i = 0;
|
|
|
|
/* Check number of arguments. */
|
|
if (argc < 10) {
|
|
fprintf(stderr, USAGE);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
/* Check arguments. */
|
|
board_size = atoi(argv[2]);
|
|
if (board_size % 2 == 0) {
|
|
fprintf(stderr, "Fatal error, only odd boardsizes supported: %d.\n",
|
|
board_size);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (board_size < 9 || board_size > 19)
|
|
fprintf(stderr, "Warning: strange boardsize: %d.\n", board_size);
|
|
|
|
moves_per_game = atoi(argv[3]);
|
|
if (moves_per_game < 1 || moves_per_game > 20)
|
|
fprintf(stderr, "Warning: strange number of moves per game: %d.\n",
|
|
moves_per_game);
|
|
|
|
handicap_value = atoi(argv[4]);
|
|
if (handicap_value < 0 || handicap_value > 10)
|
|
fprintf(stderr, "Warning: unusual handicap value: %d.\n",
|
|
handicap_value);
|
|
|
|
player_strength = atoi(argv[5]);
|
|
if (player_strength < 0 || player_strength > 30)
|
|
fprintf(stderr, "Warning: wrong lowest strength: %d.\n",
|
|
player_strength);
|
|
|
|
half_board_patterns = atoi(argv[6]);
|
|
if (half_board_patterns != 0 && half_board_patterns != 1) {
|
|
fprintf(stderr,
|
|
"Warning: incorrect half_board_flag (0 or 1). Setting the value to 0.\n");
|
|
half_board_patterns = 0;
|
|
}
|
|
|
|
min_position_freq = atoi(argv[7]);
|
|
if (min_position_freq < 1) {
|
|
fprintf(stderr, "Warning: setting min_position_freq to 1\n");
|
|
min_position_freq = 1;
|
|
}
|
|
|
|
min_move_percent = atof(argv[8]);
|
|
if (min_move_percent < 0. || min_move_percent > 100.) {
|
|
fprintf(stderr, "Warning: strange min_move_percent %g, setting to 1%%\n",
|
|
min_move_percent);
|
|
min_move_percent = 1.0;
|
|
}
|
|
|
|
min_move_freq = atoi(argv[9]);
|
|
if (min_move_freq < 0)
|
|
fprintf(stderr, "Warning: strange min_move_freq %d\n", min_move_freq);
|
|
|
|
/* Count the number of sgf files. */
|
|
number_of_games = read_sgf_filenames(argv[1], NULL);
|
|
|
|
/* Allocate space for the list of unused files. */
|
|
unused_games = calloc(number_of_games, sizeof(*unused_games));
|
|
if (unused_games == NULL) {
|
|
fprintf(stderr, "Fatal error, failed to allocate memory.\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
/* Allocate space for the list of sgf file names. */
|
|
sgf_names = calloc(number_of_games, sizeof(*sgf_names));
|
|
if (sgf_names == NULL) {
|
|
fprintf(stderr, "Fatal error, failed to allocate memory.\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
/* Read the list of sgf files and store in memory. */
|
|
read_sgf_filenames(argv[1], sgf_names);
|
|
|
|
/* Save memory by sorting out the games that can be used first */
|
|
if (argv[10] != NULL) {
|
|
fprintf(stderr, "Starting game sort\n");
|
|
sort_games();
|
|
fprintf(stderr, "Starting game writes\n");
|
|
write_sgf_filenames(argv[10], sgf_names);
|
|
}
|
|
else {
|
|
/* Build tables of random numbers for Zobrist hashing. */
|
|
init_zobrist_numbers();
|
|
|
|
/* Play through the initial moves of all games and collect hash values
|
|
* for the encountered situations.
|
|
*/
|
|
collect_situations();
|
|
fprintf(stderr, "collect OK.\n");
|
|
|
|
/* Find the most common positions and moves, for which we want to
|
|
* generate patterns.
|
|
*/
|
|
analyze_statistics();
|
|
fprintf(stderr, "analyze OK.\n");
|
|
|
|
/* Generate patterns from the chosen positions and moves.
|
|
*/
|
|
generate_patterns();
|
|
fprintf(stderr, "generate OK.\n");
|
|
|
|
printf("attribute_map value_only\n\n\n");
|
|
printf("# ");
|
|
for (i = 0; i < argc; i++)
|
|
printf("%s ", argv[i]);
|
|
printf("\n\n\n");
|
|
|
|
/* Write the patterns to stdout in patterns.db format.
|
|
*/
|
|
print_patterns();
|
|
|
|
/* Tell the user everything worked out fine */
|
|
fprintf(stderr, "The pattern database was produced with no errors.\n");
|
|
|
|
for (i = 0; i < number_of_games; i++)
|
|
if (unused_games[i])
|
|
number_of_unused_games++;
|
|
|
|
fprintf(stderr, "Out of %d games, %d were not used.\n",
|
|
number_of_games, number_of_unused_games);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Local Variables:
|
|
* tab-width: 8
|
|
* c-basic-offset: 2
|
|
* End:
|
|
*/
|