Implement axis targets, axis -> button and axis -> relative axis mappings. (#1)

Co-authored-by: Anna Rose Wiggins <annabunches@gmail.com>
Co-committed-by: Anna Rose Wiggins <annabunches@gmail.com>
This commit is contained in:
Anna Rose Wiggins 2025-07-15 19:55:19 +00:00 committed by Anna Rose Wiggins
parent ff38db6596
commit e617a6eda6
25 changed files with 903 additions and 130 deletions

View file

@ -75,7 +75,7 @@ func main() {
timerCount := 0
for _, rule := range rules {
if timedRule, ok := rule.(*mappingrules.MappingRuleAxisToButton); ok {
if timedRule, ok := rule.(mappingrules.TimedEventEmitter); ok {
go timerWatcher(timedRule, eventChannel)
timerCount++
}
@ -95,7 +95,8 @@ func main() {
case ChannelEventInput:
switch channelEvent.Event.Type {
case evdev.EV_SYN:
// We've received a SYN_REPORT, so now we send all of our pending events
// We've received a SYN_REPORT, so now we send all pending events; since SYN_REPORTs
// might come from multiple input devices, we'll always flush, just to be sure.
for _, buffer := range vBuffersByName {
buffer.SendEvents()
}
@ -114,6 +115,8 @@ func main() {
case ChannelEventTimer:
// Timer events give us the device and event to use directly
vBuffersByDevice[channelEvent.Device].AddEvent(channelEvent.Event)
// If we get a timer event, flush the output device buffer immediately
vBuffersByDevice[channelEvent.Device].SendEvents()
}
}
}

View file

@ -9,7 +9,7 @@ import (
)
const (
TimerCheckIntervalMs = 250
TimerCheckIntervalMs = 1
DeviceCheckIntervalMs = 1
)
@ -28,12 +28,12 @@ func eventWatcher(device *evdev.InputDevice, channel chan<- ChannelEvent) {
}
}
func timerWatcher(rule *mappingrules.MappingRuleAxisToButton, channel chan<- ChannelEvent) {
func timerWatcher(rule mappingrules.TimedEventEmitter, channel chan<- ChannelEvent) {
for {
event := rule.TimerEvent()
if event != nil {
channel <- ChannelEvent{
Device: rule.Output.Device,
Device: rule.GetOutputDevice(),
Event: event,
Type: ChannelEventTimer,
}

3
go.mod
View file

@ -5,11 +5,14 @@ go 1.24.4
require (
github.com/goccy/go-yaml v1.18.0
github.com/holoplot/go-evdev v0.0.0-20240306072622-217e18f17db1
github.com/jonboulle/clockwork v0.5.0
github.com/stretchr/testify v1.10.0
golang.org/x/exp v0.0.0-20250620022241-b7579e27df2b
)
require (
github.com/davecgh/go-spew v1.1.1 // indirect
github.com/pmezard/go-difflib v1.0.0 // indirect
github.com/stretchr/objx v0.5.2 // indirect
gopkg.in/yaml.v3 v3.0.1 // indirect
)

6
go.sum
View file

@ -4,10 +4,16 @@ github.com/goccy/go-yaml v1.18.0 h1:8W7wMFS12Pcas7KU+VVkaiCng+kG8QiFeFwzFb+rwuw=
github.com/goccy/go-yaml v1.18.0/go.mod h1:XBurs7gK8ATbW4ZPGKgcbrY1Br56PdM69F7LkFRi1kA=
github.com/holoplot/go-evdev v0.0.0-20240306072622-217e18f17db1 h1:92OsBIf5KB1Tatx+uUGOhah73jyNUrt7DmfDRXXJ5Xo=
github.com/holoplot/go-evdev v0.0.0-20240306072622-217e18f17db1/go.mod h1:iHAf8OIncO2gcQ8XOjS7CMJ2aPbX2Bs0wl5pZyanEqk=
github.com/jonboulle/clockwork v0.5.0 h1:Hyh9A8u51kptdkR+cqRpT1EebBwTn1oK9YfGYbdFz6I=
github.com/jonboulle/clockwork v0.5.0/go.mod h1:3mZlmanh0g2NDKO5TWZVJAfofYk64M7XN3SzBPjZF60=
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/stretchr/objx v0.5.2 h1:xuMeJ0Sdp5ZMRXx/aWO6RZxdr3beISkG5/G/aIRr3pY=
github.com/stretchr/objx v0.5.2/go.mod h1:FRsXN1f5AsAjCGJKqEizvkpNtU+EGNCLh3NxZ/8L+MA=
github.com/stretchr/testify v1.10.0 h1:Xv5erBjTwe/5IxqUQTdXv5kgmIvbHo3QQyRwhJsOfJA=
github.com/stretchr/testify v1.10.0/go.mod h1:r2ic/lqez/lEtzL7wO/rwa5dbSLXVDPFyf8C91i36aY=
golang.org/x/exp v0.0.0-20250620022241-b7579e27df2b h1:M2rDM6z3Fhozi9O7NWsxAkg/yqS/lQJ6PmkyIV3YP+o=
golang.org/x/exp v0.0.0-20250620022241-b7579e27df2b/go.mod h1:3//PLf8L/X+8b4vuAfHzxeRUl04Adcb341+IGKfnqS8=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405 h1:yhCVgyC4o1eVCa2tZl7eS0r+SDo693bJlVdllGtEeKM=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=

View file

@ -35,6 +35,7 @@ func (parser *ConfigParser) CreateVirtualDevices() map[string]*evdev.InputDevice
map[evdev.EvType][]evdev.EvCode{
evdev.EV_KEY: makeButtons(int(deviceConfig.Buttons)),
evdev.EV_ABS: makeAxes(int(deviceConfig.Axes)),
evdev.EV_REL: makeRelativeAxes(deviceConfig.RelativeAxes),
},
)
@ -116,3 +117,20 @@ func makeAxes(numAxes int) []evdev.EvCode {
return axes
}
func makeRelativeAxes(axes []string) []evdev.EvCode {
codes := make([]evdev.EvCode, 0)
for _, axis := range axes {
code, ok := evdev.RELFromString[axis]
if !ok {
logger.Logf("Relative axis '%s' invalid. Skipping.", axis)
continue
}
codes = append(codes, code)
}
return codes
}

View file

@ -24,7 +24,7 @@ func makeRuleTargetButton(targetConfig RuleTargetConfig, devs map[string]*evdev.
device,
eventCode,
targetConfig.Inverted,
), nil
)
}
func makeRuleTargetAxis(targetConfig RuleTargetConfig, devs map[string]*evdev.InputDevice) (*mappingrules.RuleTargetAxis, error) {
@ -43,8 +43,28 @@ func makeRuleTargetAxis(targetConfig RuleTargetConfig, devs map[string]*evdev.In
device,
eventCode,
targetConfig.Inverted,
0, 0, 0, // TODO: replace these with real values
), nil
targetConfig.DeadzoneStart,
targetConfig.DeadzoneEnd,
)
}
func makeRuleTargetRelaxis(targetConfig RuleTargetConfig, devs map[string]*evdev.InputDevice) (*mappingrules.RuleTargetRelaxis, error) {
device, ok := devs[targetConfig.Device]
if !ok {
return nil, fmt.Errorf("non-existent device '%s'", targetConfig.Device)
}
eventCode, ok := evdev.RELFromString[targetConfig.Axis]
if !ok {
return nil, fmt.Errorf("invalid button code '%s'", targetConfig.Button)
}
return mappingrules.NewRuleTargetRelaxis(
targetConfig.Device,
device,
eventCode,
targetConfig.Inverted,
)
}
func makeRuleTargetModeSelect(targetConfig RuleTargetConfig, allModes []string) (*mappingrules.RuleTargetModeSelect, error) {

View file

@ -1,7 +1,6 @@
package config
import (
"errors"
"fmt"
"strings"
@ -41,6 +40,8 @@ func (parser *ConfigParser) BuildRules(pDevs map[string]*evdev.InputDevice, vDev
newRule, err = makeMappingRuleAxis(ruleConfig, pDevs, vDevs, base)
case RuleTypeAxisToButton:
newRule, err = makeMappingRuleAxisToButton(ruleConfig, pDevs, vDevs, base)
case RuleTypeAxisToRelaxis:
newRule, err = makeMappingRuleAxisToRelaxis(ruleConfig, pDevs, vDevs, base)
case RuleTypeModeSelect:
newRule, err = makeMappingRuleModeSelect(ruleConfig, pDevs, modes, base)
default:
@ -134,13 +135,44 @@ func makeMappingRuleAxis(ruleConfig RuleConfig,
return mappingrules.NewMappingRuleAxis(base, input, output), nil
}
// STUB
func makeMappingRuleAxisToButton(ruleConfig RuleConfig,
pDevs map[string]*evdev.InputDevice,
vDevs map[string]*evdev.InputDevice,
base mappingrules.MappingRuleBase) (*mappingrules.MappingRuleAxisToButton, error) {
return nil, errors.New("stub: makeMappingRuleAxisToButton")
input, err := makeRuleTargetAxis(ruleConfig.Input, pDevs)
if err != nil {
return nil, err
}
output, err := makeRuleTargetButton(ruleConfig.Output, vDevs)
if err != nil {
return nil, err
}
return mappingrules.NewMappingRuleAxisToButton(base, input, output, ruleConfig.RepeatRateMin, ruleConfig.RepeatRateMax), nil
}
func makeMappingRuleAxisToRelaxis(ruleConfig RuleConfig,
pDevs map[string]*evdev.InputDevice,
vDevs map[string]*evdev.InputDevice,
base mappingrules.MappingRuleBase) (*mappingrules.MappingRuleAxisToRelaxis, error) {
input, err := makeRuleTargetAxis(ruleConfig.Input, pDevs)
if err != nil {
return nil, err
}
output, err := makeRuleTargetRelaxis(ruleConfig.Output, vDevs)
if err != nil {
return nil, err
}
return mappingrules.NewMappingRuleAxisToRelaxis(base,
input, output,
ruleConfig.RepeatRateMin,
ruleConfig.RepeatRateMax,
ruleConfig.Increment), nil
}
func makeMappingRuleModeSelect(ruleConfig RuleConfig,

View file

@ -1,5 +1,11 @@
// These types comprise the YAML schema for configuring Joyful.
// The config files will be combined and then unmarshalled into this
//
// TODO: currently the types in here aren't especially strong; each one is
// decomposed into a different object based on the Type fields. We should implement
// some sort of delayed unmarshalling technique, for example see ideas at
// https://stackoverflow.com/questions/70635636/unmarshaling-yaml-into-different-struct-based-off-yaml-field
// Then we can be more explicit about the interface here.
package config
@ -16,6 +22,7 @@ type DeviceConfig struct {
Uuid string `yaml:"uuid,omitempty"`
Buttons int `yaml:"buttons,omitempty"`
Axes int `yaml:"axes,omitempty"`
RelativeAxes []string `yaml:"rel_axes,omitempty"`
}
type RuleConfig struct {
@ -25,14 +32,17 @@ type RuleConfig struct {
Inputs []RuleTargetConfig `yaml:"inputs,omitempty"`
Output RuleTargetConfig `yaml:"output"`
Modes []string `yaml:"modes,omitempty"`
RepeatRateMin int `yaml:"repeat_rate_min,omitempty"`
RepeatRateMax int `yaml:"repeat_rate_max,omitempty"`
Increment int `yaml:"increment,omitempty"`
}
type RuleTargetConfig struct {
Device string `yaml:"device,omitempty"`
Button string `yaml:"button,omitempty"`
Axis string `yaml:"axis,omitempty"`
DeadzoneStart int32 `yaml:"axis_start,omitempty"`
DeadzoneEnd int32 `yaml:"axis_end,omitempty"`
DeadzoneStart int32 `yaml:"deadzone_start,omitempty"`
DeadzoneEnd int32 `yaml:"deadzone_end,omitempty"`
Inverted bool `yaml:"inverted,omitempty"`
Modes []string `yaml:"modes,omitempty"`
}

View file

@ -14,6 +14,7 @@ const (
RuleTypeAxis = "axis"
RuleTypeModeSelect = "mode-select"
RuleTypeAxisToButton = "axis-to-button"
RuleTypeAxisToRelaxis = "axis-to-relaxis"
)
var (

View file

@ -1,9 +1,18 @@
package mappingrules
import "github.com/holoplot/go-evdev"
import (
"time"
"github.com/holoplot/go-evdev"
)
type MappingRule interface {
MatchEvent(*evdev.InputDevice, *evdev.InputEvent, *string) (*evdev.InputDevice, *evdev.InputEvent)
MatchEvent(RuleTargetDevice, *evdev.InputEvent, *string) (*evdev.InputDevice, *evdev.InputEvent)
}
type TimedEventEmitter interface {
TimerEvent() *evdev.InputEvent
GetOutputDevice() *evdev.InputDevice
}
// RuleTargets represent either a device input to match on, or an output to produce.
@ -25,4 +34,19 @@ type RuleTarget interface {
// Typically int32 is the input event's normalized value. *string is the current mode, but is optional
// for most implementations.
CreateEvent(int32, *string) *evdev.InputEvent
MatchEvent(device RuleTargetDevice, event *evdev.InputEvent) bool
}
// RuleTargetDevice is an interface abstraction on top of evdev.InputDevice, implementing
// only the methods we need in this package. This is used for testing, and the
// RuleTargetDevice can be safely cast to an *evdev.InputDevice when necessary.
type RuleTargetDevice interface {
AbsInfos() (map[evdev.EvCode]evdev.AbsInfo, error)
}
const (
AxisValueMin = int32(-32768)
AxisValueMax = int32(32767)
NoNextEvent = time.Duration(-1)
)

View file

@ -17,11 +17,12 @@ func NewMappingRuleAxis(base MappingRuleBase, input *RuleTargetAxis, output *Rul
}
}
func (rule *MappingRuleAxis) MatchEvent(device *evdev.InputDevice, event *evdev.InputEvent, mode *string) (*evdev.InputDevice, *evdev.InputEvent) {
func (rule *MappingRuleAxis) MatchEvent(device RuleTargetDevice, event *evdev.InputEvent, mode *string) (*evdev.InputDevice, *evdev.InputEvent) {
if !rule.MappingRuleBase.modeCheck(mode) ||
!rule.Input.MatchEvent(device, event) {
return nil, nil
}
return rule.Output.Device, rule.Output.CreateEvent(rule.Input.NormalizeValue(event.Value), mode)
// The cast here is safe because the interface is only ever different for unit tests
return rule.Output.Device.(*evdev.InputDevice), rule.Output.CreateEvent(rule.Input.NormalizeValue(event.Value), mode)
}

View file

@ -4,48 +4,106 @@ import (
"time"
"github.com/holoplot/go-evdev"
"github.com/jonboulle/clockwork"
)
// TODO: This whole file is still WIP
// MappingRuleAxisToButton represents a rule that converts an axis input into a (potentially repeating)
// button output.
type MappingRuleAxisToButton struct {
MappingRuleBase
Input *RuleTargetAxis
Output *RuleTargetButton
RepeatSpeedMin int32
RepeatSpeedMax int32
lastValue int32
RepeatRateMin int
RepeatRateMax int
nextEvent time.Duration
lastEvent time.Time
repeat bool
pressed bool // "pressed" indicates that we've sent the output button signal, but still need to send the button release
active bool // "active" is true whenever the input is not in a deadzone
clock clockwork.Clock
}
func (rule *MappingRuleAxisToButton) MatchEvent(device *evdev.InputDevice, event *evdev.InputEvent, mode *string) (*evdev.InputDevice, *evdev.InputEvent) {
func NewMappingRuleAxisToButton(base MappingRuleBase, input *RuleTargetAxis, output *RuleTargetButton, repeatRateMin, repeatRateMax int) *MappingRuleAxisToButton {
return &MappingRuleAxisToButton{
MappingRuleBase: base,
Input: input,
Output: output,
RepeatRateMin: repeatRateMin,
RepeatRateMax: repeatRateMax,
lastEvent: time.Now(),
nextEvent: NoNextEvent,
repeat: repeatRateMin != 0 && repeatRateMax != 0,
pressed: false,
active: false,
clock: clockwork.NewRealClock(),
}
}
func (rule *MappingRuleAxisToButton) MatchEvent(device RuleTargetDevice, event *evdev.InputEvent, mode *string) (*evdev.InputDevice, *evdev.InputEvent) {
if !rule.MappingRuleBase.modeCheck(mode) ||
!rule.Input.MatchEvent(device, event) {
!rule.Input.MatchEventDeviceAndCode(device, event) {
return nil, nil
}
// set the last value to the normalized input value
rule.lastValue = rule.Input.NormalizeValue(event.Value)
// If we're inside the deadzone, unset the next event
if rule.Input.InDeadZone(event.Value) {
rule.nextEvent = NoNextEvent
rule.active = false
return nil, nil
}
// If we aren't repeating, we trigger the event immediately
// We also only set this if active == false, so that only one
// event can be emitted per "active" period
if !rule.repeat && !rule.active {
rule.nextEvent = 0
rule.active = true
return nil, nil
}
// use the axis value and the repeat rate to set a target time until the next event
strength := 1.0 - rule.Input.GetAxisStrength(event.Value)
rate := int64(LerpInt(rule.RepeatRateMax, rule.RepeatRateMin, strength))
rule.nextEvent = time.Duration(rate * int64(time.Millisecond))
rule.active = true
return nil, nil
}
// TimerEvent returns an event when enough time has passed (compared to the last recorded axis value)
// to emit an event.
func (rule *MappingRuleAxisToButton) TimerEvent() *evdev.InputEvent {
// This is tighter coupling than we'd like, but it will do for now.
// TODO: maybe it would be better to just be more declarative about event types and their inputs and outputs.
if rule.lastValue < rule.Input.DeadzoneStart {
rule.lastEvent = time.Now()
// If we pressed the button last tick, release it before doing anything else
if rule.pressed {
rule.pressed = false
return rule.Output.CreateEvent(0, nil)
}
// If we should not emit another event,
// we just update lastEvent for station keeping
if rule.nextEvent == NoNextEvent {
rule.lastEvent = rule.clock.Now()
return nil
}
// calculate target time until next event press
// nextEvent := rule.LastEvent + (rule.LastValue)
if rule.clock.Now().Compare(rule.lastEvent.Add(rule.nextEvent)) > -1 {
rule.lastEvent = rule.clock.Now()
rule.pressed = true
// TODO: figure out what the condition should be
if false {
// TODO: emit event
rule.lastEvent = time.Now()
// The default case here is to leave nextEvent at whatever
// it has been set to by MatchEvent. Since nextEvent is a delta,
// this will naturally cause the repeat to happen
if !rule.repeat {
rule.nextEvent = NoNextEvent
}
return rule.Output.CreateEvent(1, nil)
}
return nil
}
func (rule *MappingRuleAxisToButton) GetOutputDevice() *evdev.InputDevice {
return rule.Output.Device
}

View file

@ -0,0 +1,186 @@
package mappingrules
import (
"testing"
"time"
"github.com/holoplot/go-evdev"
"github.com/jonboulle/clockwork"
"github.com/stretchr/testify/suite"
)
type MappingRuleAxisToButtonTests struct {
suite.Suite
inputDevice *InputDeviceMock
inputRule *RuleTargetAxis
outputDevice *evdev.InputDevice
outputRule *RuleTargetButton
mode *string
base MappingRuleBase
}
func (t *MappingRuleAxisToButtonTests) SetupTest() {
mode := "*"
t.mode = &mode
t.inputDevice = new(InputDeviceMock)
t.inputDevice.On("AbsInfos").Return(map[evdev.EvCode]evdev.AbsInfo{
evdev.ABS_X: {
Minimum: 0,
Maximum: 10000,
},
}, nil)
t.inputRule, _ = NewRuleTargetAxis("test-input", t.inputDevice, evdev.ABS_X, false, int32(0), int32(1000))
t.outputDevice = &evdev.InputDevice{}
t.outputRule, _ = NewRuleTargetButton("test-output", t.outputDevice, evdev.ABS_X, false)
t.base = NewMappingRuleBase("", []string{"*"})
}
func (t *MappingRuleAxisToButtonTests) TestMatchEvent() {
// A valid input should set a nextevent
t.Run("No Repeat", func() {
testRule := NewMappingRuleAxisToButton(t.base, t.inputRule, t.outputRule, 0, 0)
t.Run("Valid Input", func() {
testRule.MatchEvent(t.inputDevice, &evdev.InputEvent{
Type: evdev.EV_ABS,
Code: evdev.ABS_X,
Value: 1001,
}, t.mode)
t.NotEqual(NoNextEvent, testRule.nextEvent)
})
t.Run("Deadzone Input", func() {
testRule.MatchEvent(t.inputDevice, &evdev.InputEvent{
Type: evdev.EV_ABS,
Code: evdev.ABS_X,
Value: 500,
}, t.mode)
t.Equal(NoNextEvent, testRule.nextEvent)
})
})
t.Run("Repeat", func() {
testRule := NewMappingRuleAxisToButton(t.base, t.inputRule, t.outputRule, 750, 250)
testRule.MatchEvent(t.inputDevice, &evdev.InputEvent{
Type: evdev.EV_ABS,
Code: evdev.ABS_X,
Value: 10000,
}, t.mode)
t.Equal(time.Duration(250*time.Millisecond), testRule.nextEvent)
testRule.MatchEvent(t.inputDevice, &evdev.InputEvent{
Type: evdev.EV_ABS,
Code: evdev.ABS_X,
Value: 1001,
}, t.mode)
t.True(testRule.nextEvent > time.Duration(700*time.Millisecond))
testRule.MatchEvent(t.inputDevice, &evdev.InputEvent{
Type: evdev.EV_ABS,
Code: evdev.ABS_X,
Value: 5500,
}, t.mode)
t.Equal(time.Duration(500*time.Millisecond), testRule.nextEvent)
})
}
func (t *MappingRuleAxisToButtonTests) TestTimerEvent() {
t.Run("No Repeat", func() {
// Get event if called immediately
t.Run("Event is available immediately", func() {
testRule, _ := buildTimerRule(t, 0, 0, 0)
event := testRule.TimerEvent()
t.EqualValues(1, event.Value)
t.Equal(true, testRule.pressed)
})
// Off event on second call
t.Run("Event emits off on second call", func() {
testRule, _ := buildTimerRule(t, 0, 0, 0)
testRule.TimerEvent()
event := testRule.TimerEvent()
t.EqualValues(0, event.Value)
t.Equal(false, testRule.pressed)
})
// No further event, even if we wait a while
t.Run("Additional events are not emitted while still active.", func() {
testRule, mockClock := buildTimerRule(t, 0, 0, 0)
testRule.TimerEvent()
testRule.TimerEvent()
mockClock.Advance(10 * time.Millisecond)
event := testRule.TimerEvent()
t.Nil(event)
t.Equal(false, testRule.pressed)
})
})
t.Run("Repeat", func() {
t.Run("No event if called immediately", func() {
testRule, _ := buildTimerRule(t, 100, 10, 50*time.Millisecond)
event := testRule.TimerEvent()
t.Nil(event)
})
t.Run("No event after 49ms", func() {
testRule, mockClock := buildTimerRule(t, 100, 10, 50*time.Millisecond)
mockClock.Advance(49 * time.Millisecond)
event := testRule.TimerEvent()
t.Nil(event)
})
t.Run("Event after 50ms", func() {
testRule, mockClock := buildTimerRule(t, 100, 10, 50*time.Millisecond)
mockClock.Advance(50 * time.Millisecond)
event := testRule.TimerEvent()
t.EqualValues(1, event.Value)
t.Equal(true, testRule.pressed)
})
t.Run("Additional event at 100ms", func() {
testRule, mockClock := buildTimerRule(t, 100, 10, 50*time.Millisecond)
mockClock.Advance(50 * time.Millisecond)
testRule.TimerEvent()
testRule.TimerEvent()
mockClock.Advance(50 * time.Millisecond)
event := testRule.TimerEvent()
t.NotNil(event)
})
})
}
func TestRunnerMappingRuleAxisToButtonTests(t *testing.T) {
suite.Run(t, new(MappingRuleAxisToButtonTests))
}
// buildTimerRule creates a MappingRuleAxisToButton with a mocked clock
func buildTimerRule(t *MappingRuleAxisToButtonTests,
repeatMin,
repeatMax int,
nextEvent time.Duration) (*MappingRuleAxisToButton, *clockwork.FakeClock) {
mockClock := clockwork.NewFakeClock()
testRule := NewMappingRuleAxisToButton(t.base, t.inputRule, t.outputRule, repeatMin, repeatMax)
testRule.clock = mockClock
testRule.lastEvent = testRule.clock.Now()
testRule.nextEvent = nextEvent
if nextEvent != NoNextEvent {
testRule.active = true
}
return testRule, mockClock
}

View file

@ -0,0 +1,99 @@
package mappingrules
import (
"time"
"git.annabunches.net/annabunches/joyful/internal/logger"
"github.com/holoplot/go-evdev"
"github.com/jonboulle/clockwork"
)
// TODO: add tests
// MappingRuleAxisToRelaxis represents a rule that converts an axis input into a (potentially repeating)
// relative axis output. This is most commonly used to generate mouse output events
type MappingRuleAxisToRelaxis struct {
MappingRuleBase
Input *RuleTargetAxis
Output *RuleTargetRelaxis
RepeatRateMin int
RepeatRateMax int
Increment int32
nextEvent time.Duration
lastEvent time.Time
clock clockwork.Clock
}
func NewMappingRuleAxisToRelaxis(
base MappingRuleBase,
input *RuleTargetAxis,
output *RuleTargetRelaxis,
repeatRateMin, repeatRateMax, increment int) *MappingRuleAxisToRelaxis {
return &MappingRuleAxisToRelaxis{
MappingRuleBase: base,
Input: input,
Output: output,
RepeatRateMin: repeatRateMin,
RepeatRateMax: repeatRateMax,
Increment: int32(increment),
lastEvent: time.Now(),
nextEvent: NoNextEvent,
clock: clockwork.NewRealClock(),
}
}
func (rule *MappingRuleAxisToRelaxis) MatchEvent(
device RuleTargetDevice,
event *evdev.InputEvent,
mode *string) (*evdev.InputDevice, *evdev.InputEvent) {
if !rule.MappingRuleBase.modeCheck(mode) ||
!rule.Input.MatchEventDeviceAndCode(device, event) {
return nil, nil
}
defer func() {
logger.Logf("DEBUG: Rule '%s' nextEvent == '%v' with device value '%d'", rule.Name, rule.nextEvent, event.Value)
}()
// If we're inside the deadzone, unset the next event
if rule.Input.InDeadZone(event.Value) {
rule.nextEvent = NoNextEvent
return nil, nil
}
// If we aren't repeating, we trigger the event immediately
// TODO: this still needs the pressed parameter...
if rule.RepeatRateMin == 0 || rule.RepeatRateMax == 0 {
rule.nextEvent = time.Millisecond
return nil, nil
}
// use the axis value and the repeat rate to set a target time until the next event
strength := 1.0 - rule.Input.GetAxisStrength(event.Value)
rate := int64(LerpInt(rule.RepeatRateMax, rule.RepeatRateMin, strength))
rule.nextEvent = time.Duration(rate * int64(time.Millisecond))
return nil, nil
}
// TimerEvent returns an event when enough time has passed (compared to the last recorded axis value)
// to emit an event.
func (rule *MappingRuleAxisToRelaxis) TimerEvent() *evdev.InputEvent {
// This indicates that we should not emit another event
if rule.nextEvent == NoNextEvent {
rule.lastEvent = rule.clock.Now()
return nil
}
if rule.clock.Now().Compare(rule.lastEvent.Add(rule.nextEvent)) > -1 {
rule.lastEvent = rule.clock.Now()
return rule.Output.CreateEvent(rule.Increment, nil)
}
return nil
}
func (rule *MappingRuleAxisToRelaxis) GetOutputDevice() *evdev.InputDevice {
return rule.Output.Device.(*evdev.InputDevice)
}

View file

@ -21,7 +21,7 @@ func NewMappingRuleButton(
}
}
func (rule *MappingRuleButton) MatchEvent(device *evdev.InputDevice, event *evdev.InputEvent, mode *string) (*evdev.InputDevice, *evdev.InputEvent) {
func (rule *MappingRuleButton) MatchEvent(device RuleTargetDevice, event *evdev.InputEvent, mode *string) (*evdev.InputDevice, *evdev.InputEvent) {
if !rule.MappingRuleBase.modeCheck(mode) {
return nil, nil
}

View file

@ -23,7 +23,7 @@ func NewMappingRuleButtonCombo(
}
}
func (rule *MappingRuleButtonCombo) MatchEvent(device *evdev.InputDevice, event *evdev.InputEvent, mode *string) (*evdev.InputDevice, *evdev.InputEvent) {
func (rule *MappingRuleButtonCombo) MatchEvent(device RuleTargetDevice, event *evdev.InputEvent, mode *string) (*evdev.InputDevice, *evdev.InputEvent) {
if !rule.MappingRuleBase.modeCheck(mode) {
return nil, nil
}

View file

@ -22,7 +22,7 @@ func NewMappingRuleButtonLatched(
}
}
func (rule *MappingRuleButtonLatched) MatchEvent(device *evdev.InputDevice, event *evdev.InputEvent, mode *string) (*evdev.InputDevice, *evdev.InputEvent) {
func (rule *MappingRuleButtonLatched) MatchEvent(device RuleTargetDevice, event *evdev.InputEvent, mode *string) (*evdev.InputDevice, *evdev.InputEvent) {
if !rule.MappingRuleBase.modeCheck(mode) {
return nil, nil
}

View file

@ -13,8 +13,7 @@ type MappingRuleButtonTests struct {
wrongInputDevice *evdev.InputDevice
outputDevice *evdev.InputDevice
mode *string
sampleRule *MappingRuleButton
invertedRule *MappingRuleButton
base MappingRuleBase
}
func (t *MappingRuleButtonTests) SetupTest() {
@ -23,72 +22,64 @@ func (t *MappingRuleButtonTests) SetupTest() {
t.outputDevice = &evdev.InputDevice{}
mode := "*"
t.mode = &mode
// TODO: implement a constructor function...
t.sampleRule = &MappingRuleButton{
MappingRuleBase: MappingRuleBase{
Modes: []string{"*"},
},
Input: NewRuleTargetButton("", t.inputDevice, evdev.BTN_TRIGGER, false),
Output: NewRuleTargetButton("", t.outputDevice, evdev.BTN_TRIGGER, false),
}
t.invertedRule = &MappingRuleButton{
MappingRuleBase: MappingRuleBase{
Modes: []string{"*"},
},
Output: NewRuleTargetButton("", t.outputDevice, evdev.BTN_TRIGGER, false),
Input: NewRuleTargetButton("", t.inputDevice, evdev.BTN_TRIGGER, true),
}
t.base = NewMappingRuleBase("", []string{})
}
func (t *MappingRuleButtonTests) TestMatchEvent() {
inputButton, _ := NewRuleTargetButton("", t.inputDevice, evdev.BTN_TRIGGER, false)
outputButton, _ := NewRuleTargetButton("", t.outputDevice, evdev.BTN_TRIGGER, false)
testRule := NewMappingRuleButton(t.base, inputButton, outputButton)
// A matching input event should produce an output event
correctOutput := &evdev.InputEvent{
expected := &evdev.InputEvent{
Type: evdev.EV_KEY,
Code: evdev.BTN_TRIGGER,
Value: 1,
}
_, event := t.sampleRule.MatchEvent(
_, event := testRule.MatchEvent(
t.inputDevice,
&evdev.InputEvent{Code: evdev.BTN_TRIGGER, Value: 1}, t.mode)
t.EqualValues(correctOutput, event)
t.EqualValues(expected, event)
// An input event from the wrong device should produce a nil event
_, event = t.sampleRule.MatchEvent(
_, event = testRule.MatchEvent(
t.wrongInputDevice,
&evdev.InputEvent{Code: evdev.BTN_TRIGGER, Value: 1}, t.mode)
t.Nil(event)
// An input event from the wrong button should produce a nil event
_, event = t.sampleRule.MatchEvent(
_, event = testRule.MatchEvent(
t.inputDevice,
&evdev.InputEvent{Code: evdev.BTN_TOP, Value: 1}, t.mode)
t.Nil(event)
}
func (t *MappingRuleButtonTests) TestMatchEventInverted() {
inputButton, _ := NewRuleTargetButton("", t.inputDevice, evdev.BTN_TRIGGER, true)
outputButton, _ := NewRuleTargetButton("", t.outputDevice, evdev.BTN_TRIGGER, false)
testRule := NewMappingRuleButton(t.base, inputButton, outputButton)
// A matching input event should produce an output event
correctOutput := &evdev.InputEvent{
expected := &evdev.InputEvent{
Type: evdev.EV_KEY,
Code: evdev.BTN_TRIGGER,
}
// Should get the opposite value out that we send in
correctOutput.Value = 0
_, event := t.invertedRule.MatchEvent(
expected.Value = 0
_, event := testRule.MatchEvent(
t.inputDevice,
&evdev.InputEvent{Code: evdev.BTN_TRIGGER, Value: 1}, t.mode)
t.EqualValues(correctOutput, event)
t.EqualValues(expected, event)
correctOutput.Value = 1
_, event = t.invertedRule.MatchEvent(
expected.Value = 1
_, event = testRule.MatchEvent(
t.inputDevice,
&evdev.InputEvent{Code: evdev.BTN_TRIGGER, Value: 0}, t.mode)
t.EqualValues(correctOutput, event)
t.EqualValues(expected, event)
}
func TestRunnerMatching(t *testing.T) {
func TestRunnerMappingRuleButtonTests(t *testing.T) {
suite.Run(t, new(MappingRuleButtonTests))
}

View file

@ -22,7 +22,7 @@ func NewMappingRuleModeSelect(
}
func (rule *MappingRuleModeSelect) MatchEvent(
device *evdev.InputDevice,
device RuleTargetDevice,
event *evdev.InputEvent,
mode *string) (*evdev.InputDevice, *evdev.InputEvent) {

View file

@ -0,0 +1,30 @@
package mappingrules
import (
"golang.org/x/exp/constraints"
)
type Numeric interface {
constraints.Integer | constraints.Float
}
func Abs[T Numeric](value T) T {
return max(value, -value)
}
// LerpInt linearly interpolates between two integer values using
// a float64 index value
func LerpInt[T constraints.Integer](min, max T, t float64) T {
t = Clamp(t, 0.0, 1.0)
return T((1-t)*float64(min) + t*float64(max))
}
func Clamp[T Numeric](value, min, max T) T {
if value < min {
value = min
}
if value > max {
value = max
}
return value
}

View file

@ -1,66 +1,87 @@
package mappingrules
import (
"errors"
"fmt"
"github.com/holoplot/go-evdev"
)
type RuleTargetAxis struct {
DeviceName string
Device *evdev.InputDevice
Device RuleTargetDevice
Axis evdev.EvCode
Inverted bool
DeadzoneStart int32
DeadzoneEnd int32
Sensitivity float64
axisSize int32
deadzoneSize int32
}
func NewRuleTargetAxis(device_name string,
device *evdev.InputDevice,
device RuleTargetDevice,
axis evdev.EvCode,
inverted bool,
deadzone_start int32,
deadzone_end int32,
sensitivity float64) *RuleTargetAxis {
deadzoneStart int32,
deadzoneEnd int32) (*RuleTargetAxis, error) {
info, err := device.AbsInfos()
if err != nil {
// If we can't get AbsInfo (for example, we're a virtual device)
// we set the bounds to the maximum allowable
info = map[evdev.EvCode]evdev.AbsInfo{
axis: {
Minimum: AxisValueMin,
Maximum: AxisValueMax,
},
}
}
if _, ok := info[axis]; !ok {
return nil, fmt.Errorf("device does not support axis %v", axis)
}
if deadzoneStart > deadzoneEnd {
return nil, errors.New("deadzone_end must be a higher value than deadzone_start")
}
deadzoneSize := Abs(deadzoneEnd - deadzoneStart)
// Our output range is limited to 16 bits, but we represent values internally with 32 bits.
// As a result, we shouldn't need to worry about integer overruns
axisSize := info[axis].Maximum - info[axis].Minimum - deadzoneSize
if axisSize == 0 {
return nil, errors.New("axis has size 0")
}
return &RuleTargetAxis{
DeviceName: device_name,
Device: device,
Axis: axis,
Inverted: inverted,
DeadzoneStart: deadzone_start,
DeadzoneEnd: deadzone_end,
Sensitivity: sensitivity,
}
DeadzoneStart: deadzoneStart,
DeadzoneEnd: deadzoneEnd,
deadzoneSize: deadzoneSize,
axisSize: axisSize,
}, nil
}
// TODO: lots of fixes and decisions to make here. Should we normalize all axes to the same range?
// How do we handle deadzones in light of that?
// NormalizeValue takes a raw input value and converts it to a value suitable for output.
//
// Axis inputs are normalized to the full signed int32 range to match the virtual device's axis
// characteristics.
//
// Typically this function is called after RuleTargetAxis.MatchEvent, which checks whether we are
// in the deadzone, among other things.
func (target *RuleTargetAxis) NormalizeValue(value int32) int32 {
if !target.Inverted {
return value
}
axisRange := target.DeadzoneEnd - target.DeadzoneStart
axisMid := target.DeadzoneEnd - axisRange/2
delta := value - axisMid
if delta < 0 {
delta = -delta
}
if value < axisMid {
return axisMid + delta
} else if value > axisMid {
return axisMid - delta
}
// If we reach here, we're either exactly at the midpoint or something
// strange has happened. Either way, just return the value.
return value
axisStrength := target.GetAxisStrength(value)
return LerpInt(AxisValueMin, AxisValueMax, axisStrength)
}
func (target *RuleTargetAxis) CreateEvent(value int32, mode *string) *evdev.InputEvent {
// TODO: we can use the axis begin/end to decide whether to emit the event
// TODO: oh no we need center deadzones actually...
value = Clamp(value, AxisValueMin, AxisValueMax)
return &evdev.InputEvent{
Type: evdev.EV_ABS,
Code: target.Axis,
@ -68,8 +89,33 @@ func (target *RuleTargetAxis) CreateEvent(value int32, mode *string) *evdev.Inpu
}
}
func (target *RuleTargetAxis) MatchEvent(device *evdev.InputDevice, event *evdev.InputEvent) bool {
func (target *RuleTargetAxis) MatchEvent(device RuleTargetDevice, event *evdev.InputEvent) bool {
return target.MatchEventDeviceAndCode(device, event) &&
!target.InDeadZone(event.Value)
}
// TODO: Add tests
func (target *RuleTargetAxis) MatchEventDeviceAndCode(device RuleTargetDevice, event *evdev.InputEvent) bool {
return device == target.Device &&
event.Type == evdev.EV_ABS &&
event.Code == target.Axis
}
// TODO: Add tests
func (target *RuleTargetAxis) InDeadZone(value int32) bool {
return value >= target.DeadzoneStart && value <= target.DeadzoneEnd
}
// GetAxisStrength returns a float between 0.0 and 1.0, representing the proportional
// position along the axis' full range. (after factoring in deadzones)
// Calling this function with `value` inside the deadzone range will produce undefined behavior
func (target *RuleTargetAxis) GetAxisStrength(value int32) float64 {
if value > target.DeadzoneEnd {
value -= target.deadzoneSize
}
strength := float64(value) / float64(target.axisSize)
if target.Inverted {
strength = 1.0 - strength
}
return strength
}

View file

@ -0,0 +1,184 @@
package mappingrules
import (
"errors"
"testing"
"github.com/holoplot/go-evdev"
"github.com/stretchr/testify/mock"
"github.com/stretchr/testify/suite"
)
type RuleTargetAxisTests struct {
suite.Suite
mock *InputDeviceMock
call *mock.Call
}
func (t *RuleTargetAxisTests) SetupTest() {
t.mock = new(InputDeviceMock)
t.call = t.mock.On("AbsInfos").Return(map[evdev.EvCode]evdev.AbsInfo{
evdev.ABS_X: {
Minimum: 0,
Maximum: 10000,
},
evdev.ABS_Y: {
Minimum: -10000,
Maximum: 10000,
},
}, nil)
}
func (t *RuleTargetAxisTests) TearDownTest() {
t.call.Unset()
}
func (t *RuleTargetAxisTests) TestNewRuleTargetAxis() {
// RuleTargets should get created
ruleTarget, err := NewRuleTargetAxis("", t.mock, evdev.ABS_X, false, 0, 0)
t.Nil(err)
t.EqualValues(10000, ruleTarget.axisSize)
ruleTarget, err = NewRuleTargetAxis("", t.mock, evdev.ABS_Y, false, 0, 0)
t.Nil(err)
t.EqualValues(20000, ruleTarget.axisSize)
// Creating a rule with a deadzone should work and reduce the axisSize
ruleTarget, err = NewRuleTargetAxis("", t.mock, evdev.ABS_Y, false, -500, 500)
t.Nil(err)
t.EqualValues(19000, ruleTarget.axisSize)
t.EqualValues(-500, ruleTarget.DeadzoneStart)
t.EqualValues(500, ruleTarget.DeadzoneEnd)
// Creating a rule with a deadzone should fail if end > start
_, err = NewRuleTargetAxis("", t.mock, evdev.ABS_Y, false, 500, -500)
t.NotNil(err)
// Creating a rule on a non-existent axis should err
_, err = NewRuleTargetAxis("", t.mock, evdev.ABS_Z, false, 0, 0)
t.NotNil(err)
// If Absinfo has an error, we should create a device with permissive bounds
t.call.Unset()
t.mock.On("AbsInfos").Return(map[evdev.EvCode]evdev.AbsInfo{}, errors.New("Test Error"))
ruleTarget, err = NewRuleTargetAxis("", t.mock, evdev.ABS_X, false, 0, 0)
t.Nil(err)
t.Equal(AxisValueMax-AxisValueMin, ruleTarget.axisSize)
}
func (t *RuleTargetAxisTests) TestNormalizeValue() {
// Basic normalization should work
ruleTarget, _ := NewRuleTargetAxis("", t.mock, evdev.ABS_X, false, 0, 0)
t.Equal(AxisValueMax, ruleTarget.NormalizeValue(int32(10000)))
t.Equal(AxisValueMin, ruleTarget.NormalizeValue(int32(0)))
t.EqualValues(0, ruleTarget.NormalizeValue(int32(5000)))
// Normalization with a deadzone should work
ruleTarget, _ = NewRuleTargetAxis("", t.mock, evdev.ABS_X, false, 0, 5000)
t.Equal(AxisValueMax, ruleTarget.NormalizeValue(int32(10000)))
t.True(ruleTarget.NormalizeValue(int32(5001)) < int32(-31000))
t.EqualValues(0, ruleTarget.NormalizeValue(int32(7500)))
// Normalization on an inverted axis should work
ruleTarget, _ = NewRuleTargetAxis("", t.mock, evdev.ABS_X, true, 0, 0)
t.Equal(AxisValueMax, ruleTarget.NormalizeValue(int32(0)))
t.Equal(AxisValueMin, ruleTarget.NormalizeValue(int32(10000)))
// Normalization past the stated axis bounds should clamp
ruleTarget, _ = NewRuleTargetAxis("", t.mock, evdev.ABS_X, false, 0, 0)
t.Equal(AxisValueMin, ruleTarget.NormalizeValue(int32(-30000)))
t.Equal(AxisValueMax, ruleTarget.NormalizeValue(int32(30000)))
}
func (t *RuleTargetAxisTests) TestMatchEvent() {
ruleTarget, _ := NewRuleTargetAxis("", t.mock, evdev.ABS_Y, false, -500, 500)
validEvent := &evdev.InputEvent{
Type: evdev.EV_ABS,
Code: evdev.ABS_Y,
Value: 800,
}
deadzoneEvent := &evdev.InputEvent{
Type: evdev.EV_ABS,
Code: evdev.ABS_Y,
Value: 200,
}
// An event on the correct device and axis should match
t.True(ruleTarget.MatchEvent(t.mock, validEvent))
// A value on the wrong device should not match
t.False(ruleTarget.MatchEvent(&evdev.InputDevice{}, validEvent))
// A value in the deadzone should not match
t.False(ruleTarget.MatchEvent(t.mock, deadzoneEvent))
}
func (t *RuleTargetAxisTests) TestCreateEvent() {
ruleTarget, _ := NewRuleTargetAxis("", t.mock, evdev.ABS_X, false, 0, 0)
expected := &evdev.InputEvent{
Type: evdev.EV_ABS,
Code: evdev.ABS_X,
}
// Basic event creation
testValue := int32(3928) // Arbitrarily chosen test value
expected.Value = testValue
t.EqualValues(expected, ruleTarget.CreateEvent(testValue, nil))
// Validate axis clamping
testValue = int32(64000)
expected.Value = AxisValueMax
t.EqualValues(expected, ruleTarget.CreateEvent(testValue, nil))
testValue = int32(-64000)
expected.Value = AxisValueMin
t.EqualValues(expected, ruleTarget.CreateEvent(testValue, nil))
}
func (t *RuleTargetAxisTests) TestGetAxisStrength() {
t.Run("With no deadzone", func() {
ruleTarget, _ := NewRuleTargetAxis("", t.mock, evdev.ABS_X, false, 0, 0)
t.Equal(0.0, ruleTarget.GetAxisStrength(0))
t.Equal(1.0, ruleTarget.GetAxisStrength(10000))
t.Equal(0.5, ruleTarget.GetAxisStrength(5000))
})
t.Run("With low deadzone", func() {
ruleTarget, _ := NewRuleTargetAxis("", t.mock, evdev.ABS_X, false, 0, 5000)
t.InDelta(0.0, ruleTarget.GetAxisStrength(5001), 0.01)
t.InDelta(0.5, ruleTarget.GetAxisStrength(7500), 0.01)
t.Equal(1.0, ruleTarget.GetAxisStrength(10000))
})
t.Run("With high deadzone", func() {
ruleTarget, _ := NewRuleTargetAxis("", t.mock, evdev.ABS_X, false, 5000, 10000)
t.Equal(0.0, ruleTarget.GetAxisStrength(0))
t.InDelta(0.5, ruleTarget.GetAxisStrength(2500), 0.01)
t.InDelta(1.0, ruleTarget.GetAxisStrength(4999), 0.01)
})
t.Run("Inverted", func() {
ruleTarget, _ := NewRuleTargetAxis("", t.mock, evdev.ABS_X, true, 0, 0)
t.Equal(1.0, ruleTarget.GetAxisStrength(0))
t.Equal(0.5, ruleTarget.GetAxisStrength(5000))
t.Equal(0.0, ruleTarget.GetAxisStrength(10000))
})
t.Run("Inverted with low deadzone", func() {
ruleTarget, _ := NewRuleTargetAxis("", t.mock, evdev.ABS_X, true, 0, 5000)
t.InDelta(1.0, ruleTarget.GetAxisStrength(5001), 0.01)
t.InDelta(0.5, ruleTarget.GetAxisStrength(7500), 0.01)
t.Equal(0.0, ruleTarget.GetAxisStrength(10000))
})
t.Run("Inverted with high deadzone", func() {
ruleTarget, _ := NewRuleTargetAxis("", t.mock, evdev.ABS_X, true, 5000, 10000)
t.InDelta(0.0, ruleTarget.GetAxisStrength(4999), 0.01)
t.InDelta(0.5, ruleTarget.GetAxisStrength(2500), 0.01)
t.Equal(1.0, ruleTarget.GetAxisStrength(0))
})
}
func TestRunnerRuleTargetAxisTests(t *testing.T) {
suite.Run(t, new(RuleTargetAxisTests))
}

View file

@ -9,13 +9,13 @@ type RuleTargetButton struct {
Inverted bool
}
func NewRuleTargetButton(device_name string, device *evdev.InputDevice, code evdev.EvCode, inverted bool) *RuleTargetButton {
func NewRuleTargetButton(device_name string, device *evdev.InputDevice, code evdev.EvCode, inverted bool) (*RuleTargetButton, error) {
return &RuleTargetButton{
DeviceName: device_name,
Device: device,
Button: code,
Inverted: inverted,
}
}, nil
}
func (target *RuleTargetButton) NormalizeValue(value int32) int32 {
@ -36,7 +36,7 @@ func (target *RuleTargetButton) CreateEvent(value int32, _ *string) *evdev.Input
}
}
func (target *RuleTargetButton) MatchEvent(device *evdev.InputDevice, event *evdev.InputEvent) bool {
func (target *RuleTargetButton) MatchEvent(device RuleTargetDevice, event *evdev.InputEvent) bool {
return device == target.Device &&
event.Type == evdev.EV_KEY &&
event.Code == target.Button

View file

@ -0,0 +1,46 @@
package mappingrules
import (
"github.com/holoplot/go-evdev"
)
type RuleTargetRelaxis struct {
DeviceName string
Device RuleTargetDevice
Axis evdev.EvCode
Inverted bool
}
func NewRuleTargetRelaxis(device_name string,
device RuleTargetDevice,
axis evdev.EvCode,
inverted bool) (*RuleTargetRelaxis, error) {
return &RuleTargetRelaxis{
DeviceName: device_name,
Device: device,
Axis: axis,
Inverted: inverted,
}, nil
}
// NormalizeValue takes a raw input value and converts it to a value suitable for output.
//
// Relative axes are currently only supported for output.
// TODO: make this have an error return?
func (target *RuleTargetRelaxis) NormalizeValue(value int32) int32 {
return 0
}
func (target *RuleTargetRelaxis) CreateEvent(value int32, mode *string) *evdev.InputEvent {
return &evdev.InputEvent{
Type: evdev.EV_REL,
Code: target.Axis,
Value: value,
}
}
// Relative axis is only supported for output.
func (target *RuleTargetRelaxis) MatchEvent(device RuleTargetDevice, event *evdev.InputEvent) bool {
return false
}

View file

@ -0,0 +1,15 @@
package mappingrules
import (
"github.com/holoplot/go-evdev"
"github.com/stretchr/testify/mock"
)
type InputDeviceMock struct {
mock.Mock
}
func (m *InputDeviceMock) AbsInfos() (map[evdev.EvCode]evdev.AbsInfo, error) {
args := m.Called()
return args.Get(0).(map[evdev.EvCode]evdev.AbsInfo), args.Error(1)
}