kOS/lib/node.ks

164 lines
4.1 KiB
Plaintext

function ExecNode {
if not HASNODE {
print "No node to execute.".
return.
}
SAS off.
// begin the burn at leadT seconds before the node.
local leadT is BurnTime(NEXTNODE:DELTAV:MAG / 2).
local t is BurnTime(NEXTNODE:DELTAV:MAG).
if WillStage(NEXTNODE:DELTAV:MAG) {
print "WARNING: kOS will stage during this node execution. Safe cancellation requires reboot.".
when flameOut() then {
print "Flameout detected. Staging.".
stage.
}
}
print "Adjusting heading".
lock STEERING to LookDirUp(NEXTNODE:DELTAV, SHIP:FACING:TOPVECTOR).
wait until VAng(SHIP:FACING:FOREVECTOR, STEERINGMANAGER:TARGET:FOREVECTOR) <= 0.1.
print "Warping to node.".
KUNIVERSE:TIMEWARP:WarpTo(NEXTNODE:TIME - leadT - 5).
wait until NEXTNODE:ETA <= leadT.
print "Executing burn.".
local dvMin is NEXTNODE:DELTAV:MAG.
lock THROTTLE to 1.0.
wait t.
lock THROTTLE to 0.0.
unlock THROTTLE.
unlock STEERING.
SAS on.
print "Node execution complete.".
}
function WillStage {
parameter dV.
if not HASNODE { return false. }
return dV > NEXTNODE:DELTAV:MAG.
}
// Calculate the time required to burn a given dV.
// Assumes a perfectly spherical Kerbal in a vacuum.
function BurnTime {
parameter totaldV, s is STAGE:NUMBER.
local totalT is 0.0.
local lastStage is false.
// We allow a small tolerance to deal with potential floating point errors.
until totaldV <= 0.001 {
local F is stageThrust().
local Isp is stageISP().
local m is stageMass(s).
// TODO: handle node execution in atmosphere?
local dV is min(totaldV, SHIP:StageDeltaV(s):VACUUM).
local t is calcBurnTime(dV, m, Isp, F).
print "DEBUG: " + dV + " m/s^2 in stage " + s + ", in " + t + " seconds.".
set totaldV to totaldV - dV.
set s to s - 1.
set totalT to totalT + t.
}
print "DEBUG: Total Burn Time: " + totalT + " s.".
return totalT.
}
// Convenience function to wrap the actual calculation for burn time.
function calcBurnTime {
parameter dV, m, Isp, F.
if F = 0 {
print "WARNING: Tried to calculate burn time with a thrust of 0. Returning 0. Your calculations are probably wrong.".
return 0.
}
local g0 is CONSTANT:G0.
return g0 * m * Isp * (1 - CONSTANT():E^(-dV/(g0*Isp))) / F.
}
// Calculate the ISP for a given stage.
// Defaults to current stage. Assumes your ship is designed so that
// engines are discarded immediately when they flame out.
function stageISP {
parameter s is STAGE:NUMBER.
local en is list().
list ENGINES in en.
local ispSum is 0.
local eCount is 0.
for e in en {
if e:STAGE >= s and e:DECOUPLEDIN < s {
set ispSum to ispSum + e:ISP.
set eCount to eCount + 1.
}
}
if eCount = 0 { return 0. }
return ispSum / eCount.
}
// Calculates the total thrust for the given stage, in kN.
// Defaults to current stage. Assumes your ship is designed so that
// engines are discarded immediately when they flame out.
function stageThrust {
parameter s is STAGE:NUMBER.
local en is list().
list ENGINES in en.
local sum is 0.
for e in en {
if e:STAGE >= s and e:DECOUPLEDIN < s {
set sum to sum + e:POSSIBLETHRUST.
}
}
return sum.
}
// Determine mass at start of target stage.
// This can handle Delta V-style launchers but
// only if the central rocket remains in the stack
// for exactly two stages, one of which is the current stage.
// More complex staging with partially depleted tanks may produce
// undefined behavior.
function stageMass {
parameter s is STAGE:NUMBER.
local m is SHIP:MASS.
if s = SHIP:STAGENUM { return m. }
local ps is List().
list PARTS in ps.
for part in ps {
if part:DECOUPLEDIN <= s {
set m to m - part:MASS.
} else if part:HasSuffix("AVAILABLETHRUST") and part:AVAILABLETHRUST > 0 {
// This is an engine and it is currently active. Subtract the fuel
// it will burn before the next stage.
set m to m - (part:MAXMASSFLOW * SHIP:StageDeltaV(SHIP:STAGENUM):DURATION).
}
}
return m.
}
function flameOut {
local ens is List().
list engines in ens.
for en in ens {
if en:FLAMEOUT {
return true.
}
}
return false.
}