2021-07-19 07:43:07 +00:00
// functions for calculating steering values.
2021-07-19 04:54:32 +00:00
2021-08-08 20:23:49 +00:00
// Create a node that will circularize the orbit.
// 'where' can be one of:
// the special string "APO", for the next Apoapsis.
// the special string "PERI", for the next Periapsis.
// a time value (either a Time struct or a scalar), representing a target time.
2021-07-20 08:18:16 +00:00
function CreateCircularizationNode {
2021-08-08 20:23:49 +00:00
parameter where is "APO".
2021-07-20 08:18:16 +00:00
2021-08-09 00:47:14 +00:00
local t is TIME.
2021-08-08 20:23:49 +00:00
if where:IsType("String") {
if where = "APO" {
2021-08-09 00:47:14 +00:00
set t to TIME + SHIP:ORBIT:ETA:APOAPSIS.
2021-08-08 20:23:49 +00:00
} else if where = "PERI" {
2021-08-09 00:47:14 +00:00
set t to TIME + SHIP:ORBIT:ETA:PERIAPSIS.
2021-08-08 20:23:49 +00:00
} else {
print "WARNING: Invalid string passed to CreateCirculazationNode(). Node is invalid.".
}
} else {
2021-08-09 00:47:14 +00:00
// we've been passed a time at which to circularize.
2021-08-08 20:23:49 +00:00
set t to where.
}
2021-07-20 08:18:16 +00:00
2021-08-09 00:47:14 +00:00
local Vc is sqrt(SHIP:BODY:MU/(PositionAt(SHIP, t) - SHIP:BODY:POSITION):MAG).
2021-07-20 08:18:16 +00:00
local dV is Vc - VelocityAt(SHIP, t):ORBIT:MAG.
local n is Node(t, 0, 0, dV).
return n.
2021-07-19 07:43:07 +00:00
}
2021-08-09 17:51:24 +00:00
2021-08-10 22:08:00 +00:00
// The distance at which to start burning to reach a target on the ground.
// REQUIRES a circular orbit.
// TODO: it would be great to semi-automate this...
function TargetBurnDistance {
return Sqrt(StoppingDistance()^2 + (SHIP:ORBIT:SEMIMAJORAXIS - SHIP:BODY:RADIUS - TARGET:ALTITUDE)^2).
}
// Stopping distance at current velocity. For a circular orbit this is valid at any point in the orbit.
function StoppingDistance {
local dV is SHIP:VELOCITY:SURFACE:MAG.
return dV*BurnTime(dV)/2.
}
2021-08-10 22:12:54 +00:00
function ExecNode {
if not HASNODE {
print "No node to execute.".
return.
}
2021-08-10 22:08:00 +00:00
2021-08-10 22:12:54 +00:00
SAS off.
// begin the burn at leadT seconds before the node.
local leadT is BurnTime(NEXTNODE:DELTAV:MAG / 2).
local t is BurnTime(NEXTNODE:DELTAV:MAG).
if WillStage(NEXTNODE:DELTAV:MAG) {
print "WARNING: kOS will stage during this node execution. Safe cancellation requires reboot.".
when FlameOut() then {
print "Flameout detected. Staging.".
stage.
}
}
print "Adjusting heading".
// The vector constant here should always align our "sides" with the universal up/down axis, so we can predictably place solar panels.
lock STEERING to LookDirUp(NEXTNODE:DELTAV, V(0,0,90)).
wait until VAng(SHIP:FACING:FOREVECTOR, STEERINGMANAGER:TARGET:FOREVECTOR) <= 0.1.
print "Warping to node.".
KUNIVERSE:TIMEWARP:WarpTo(NEXTNODE:TIME - leadT - 2).
wait until SHIP:UNPACKED.
wait until NEXTNODE:ETA <= leadT.
print "Executing burn.".
local dvMin is NEXTNODE:DELTAV:MAG.
lock THROTTLE to 1.0.
wait t.
lock THROTTLE to 0.0.
unlock THROTTLE.
unlock STEERING.
SAS on.
print "Node execution complete.".
}
// currently only works for testing against *current* stage.
function WillStage {
parameter dV.
if not HASNODE { return false. }
return dV > SHIP:StageDeltaV(SHIP:STAGENUM):VACUUM.
}
// Calculate the time required to burn a given dV.
// Assumes a perfectly spherical Kerbal in a vacuum.
function BurnTime {
parameter totaldV, s is STAGE:NUMBER.
local totalT is 0.0.
local lastStage is false.
// We allow a small tolerance to deal with potential floating point errors.
until totaldV <= 0.001 {
local F is stageThrust(s).
local Isp is stageISP(s).
local m is stageMass(s).
// TODO: handle node execution in atmosphere?
local dV is min(totaldV, SHIP:StageDeltaV(s):VACUUM).
local t is calcBurnTime(dV, m, Isp, F).
set totaldV to totaldV - dV.
set s to s - 1.
set totalT to totalT + t.
}
return totalT.
}
// Convenience function to wrap the actual calculation for burn time.
function calcBurnTime {
parameter dV, m, Isp, F.
if F = 0 or Isp = 0 {
print "WARNING: Tried to calculate burn time with a denominator value of 0. Returning 0. Your calculations are probably wrong.".
print "F: " + F .
print "Isp: " + Isp.
return 0.
}
local g0 is CONSTANT:G0.
return g0 * m * Isp * (1 - CONSTANT():E^(-dV/(g0*Isp))) / F.
}
// Calculate the ISP for a given stage.
// Defaults to current stage. Assumes your ship is designed so that
// engines are discarded immediately when they flame out.
function stageISP {
parameter s is STAGE:NUMBER.
local en is list().
list ENGINES in en.
local ispSum is 0.
local eCount is 0.
for e in en {
if e:STAGE >= s and e:DECOUPLEDIN < s {
set ispSum to ispSum + e:VACUUMISP.
set eCount to eCount + 1.
}
}
if eCount = 0 { return 0. }
return ispSum / eCount.
}
// Calculates the total thrust for the given stage, in kN.
// Defaults to current stage. Assumes your ship is designed so that
// engines are discarded immediately when they flame out.
function stageThrust {
parameter s is STAGE:NUMBER.
local en is list().
list ENGINES in en.
local sum is 0.
for e in en {
if e:STAGE >= s and e:DECOUPLEDIN < s {
set sum to sum + e:POSSIBLETHRUST.
}
}
return sum.
}
// Determine mass at start of target stage.
// This can handle Delta V-style launchers but
// only if the central rocket remains in the stack
// for exactly two stages, one of which is the current stage.
// More complex staging with partially depleted tanks may produce
// undefined behavior.
function stageMass {
parameter s is STAGE:NUMBER.
local m is SHIP:MASS.
if s = SHIP:STAGENUM { return m. }
local ps is List().
list PARTS in ps.
for part in ps {
if part:DECOUPLEDIN >= s {
set m to m - part:MASS.
}
}
list ENGINES in ps.
for part in ps {
if part:DECOUPLEDIN < s and part:AVAILABLETHRUST > 0 {
set m to m - (part:MAXMASSFLOW * SHIP:StageDeltaV(SHIP:STAGENUM):DURATION).
}
}
return m.
}
// TODO: This would be better in throttle.ks or perhaps some sort of ship status library,
// but we want to avoid too many inter-dependencies for now.
function FlameOut {
local ens is List().
list engines in ens.
for en in ens {
if en:FLAMEOUT {
return true.
}
}
return false.
}
2021-08-10 22:08:00 +00:00
2021-08-09 17:51:24 +00:00
// function PredictGeo {
// parameter t.
// local pos is PositionAt(SHIP,t).
// local rDir is VDOT(SHIP:BODY:NORTH:FOREVECTOR,SHIP:BODY:ANGULARVEL). //the number of radians the body will rotate in one second (negative if rotating counter clockwise when viewed looking down on north
// local dT is t - TIME:SECONDS.
// local geoPos is SHIP:BODY:GeoPositionOf(pos).
// local drift is rDir * dT * CONSTANT:RADTODEG.
// local long is Mod(geoPos:LNG + drift, 360).
// if long < -180 {
// set long to long + 360.
// }
// if long > 180 {
// set long TO long - 360.
// }
// return LatLng(geoPos:LAT, long).
// }