#include "gamedata.h" #include "mathutils.h" #include "debug.h" #include #include #include using std::list; int GameData::PLAYER1_COLOUR = 0x4a483f; int GameData::PLAYER2_COLOUR = 0x090c7a; int GameData::BASE_BUILD_RADIUS = 75; int GameData::NODE_RADIUS = 10; GameData::GameData() : Graph(true) { current = NULL; mode = MODE_BUILD; player1 = Player(PLAYER1_COLOUR); player2 = Player(PLAYER2_COLOUR); turn = &player1; } GameData::~GameData() { } Vertex* GameData::get_current_vertex(bool only_mine) const { if (only_mine) { if (current != NULL && current->colour == turn->get_colour()) return current; return NULL; } return current; } void GameData::toggle_turn() { if (!turn->has_played()) turn->set_played(); if (!endgame()) { if (turn == &player1) turn = &player2; else if (turn == &player2) turn = &player1; if (!turn->has_played()) mode = MODE_BUILD; else mode = MODE_SELECT; } current = NULL; } void GameData::handle_click(int x, int y) { int r = 10; int colour; colour = turn->get_colour(); if (mode == MODE_SELECT) { // select_vertex handles making sure a point exists at (x,y) select_vertex(x, y); } else if (mode == MODE_BUILD) { add_vertex(x, y, 0, r, colour); } else if (mode == MODE_ATTACK) { if (select_vertex(x, y, true)) return; Vertex* v = vertex_at(x, y, 0); if (v == NULL) return; if (v->colour != colour) attack_vertex(v); } } bool GameData::select_vertex(int x, int y, bool only_mine) { Vertex * v = vertex_at(x, y, 0); if (v == NULL) return false; if (only_mine && v->colour == turn->get_colour()) { current = v; return true; } current = v; return true; } bool GameData::add_vertex(int x, int y, int z, int r, int colour) { if (current == NULL) { // this is the special case for adding the first vertex for each player if (!turn->has_played()) { if (Graph::add_vertex(x, y, z, r, colour, 10)) { #ifdef DEBUG fprintf(stderr, "debug: GameData::add_vertex(): strength=%2.f\n", calculate_strength(*(vertices.rbegin()))); #endif toggle_turn(); return true; } } // really, we shouldn't be able to get here. return false just in case return false; } // same here - just a logic check if (current->colour != turn->get_colour()) return false; // This is the range check... if (MathUtils::distance(current->x, current->y, 0, x, y, 0) > get_range()) return false; if (Graph::add_vertex(x, y, z, r, colour, 10, current)) { #ifdef DEBUG fprintf(stderr, "debug: GameData::add_vertex(): strength=%.2f\n", calculate_strength(*(vertices.rbegin()))); #endif toggle_turn(); return true; } return false; } float GameData::calculate_strength(Vertex* node) { list visited; // Special case - a one-node tree just returns its own score! if (node->neighbors.empty()) return (float)node->score; return calculate_strength_r(node, 0, visited); } // Oh the recursive recursion! float GameData::calculate_strength_r(Vertex* node, unsigned int depth, list& visited) { // Find which vertices we need to visit from here list neighbors = node->neighbors; list to_visit; visited.push_back(node); for (list::iterator cursor = neighbors.begin(); cursor != neighbors.end(); cursor++) { Vertex* v = *cursor; // if this is true, we haven't visited the vertex on the other end of // this edge yet if (find(visited.begin(), visited.end(), v) == visited.end()) { to_visit.push_back(v); } } // This is the base case - this node has no unvisited neighbors if (to_visit.empty()) { assert(depth > 0); return (float)(node->score) / depth; } // Else, iterate through to_visit and visit them all, summing their // effective strengths adjusted for depth. // Since our trees are acyclic, this can't loop. float modscore = (float)node->score; if (depth > 0) modscore /= depth; for (list::iterator cursor = to_visit.begin(); cursor != to_visit.end(); cursor++) { Vertex* v = *cursor; modscore += calculate_strength_r(v, depth+1, visited); } return modscore; } // This class contains logic checks to keep the mode aligned with // what is reasonable. Special cases inside the GameData class should just // do mode = MODE_ void GameData::set_mode(Mode m) { // Stay in MODE_SELECT (or maybe MODE_BUILD) when current is null if (current == NULL) return; // The other modes all require current to match the player if (current->colour == turn->get_colour()) mode = m; } int GameData::get_range(Vertex* node) { if (node == NULL) node = current; if (node == NULL) return 0; else if (mode == MODE_MOVE) return turn->get_energy(); else if (mode == MODE_BUILD) return BASE_BUILD_RADIUS; else if (mode == MODE_ATTACK) { int range = BASE_BUILD_RADIUS; list neighbors = node->neighbors; for(list::iterator cursor = neighbors.begin(); cursor != neighbors.end(); cursor++) { Vertex* v = *cursor; range -= (100 - MathUtils::distance(v->x, v->y, v->z, node->x, node->y, node->z)) / 2; } if (range < 0) range = 0; return range; } } void GameData::attack_vertex(Vertex* target) { float atk_str = calculate_strength(current); float def_str = calculate_strength(target); float armor = def_str / 10; // how much energy it takes to deal 1 damage int damage = (int)(atk_str / armor); target->score -= damage; if (target->score <= 0) remove_vertex(target); #ifdef DEBUG fprintf(stderr, "debug: GameData::attack_vertex(): atk_str=%.2f, def_str=%.2f, armor=%.2f, damage=%d\n", atk_str, def_str, armor, damage); #endif toggle_turn(); } bool GameData::endgame() { if (!(player1.has_played() && player2.has_played())) return false; if (get_colour(player1.get_colour()).empty()) { debug("Gamedata::endgame(): player 2 wins\n"); return true; } if (get_colour(player2.get_colour()).empty()) { debug("Gamedata::endgame(): player 1 wins\n"); return true; } return false; }