# The following settings are supported: # # - all _common settings_ # # - all _game settings_ # # - tuning event settings (cf mcts_tuner): # - candidate_colour # - opponent # - parameters # - make_candidate # # - settings for experiment control # - parallel -- number of games to run in parallel # - stop_on_error -- boolean # # - regression parameters: # - clop_H -- float # - correlations -- 'all' (default) or 'none' # ## << # clop_H: 3 is recommended (it is the default value) # correlations: # Even if variables are not correlated "all" should work well. The problem is # that the regression might become very costly if the number of variables is # high. So use "correlations none" only if you are certain parameters are # independent or you have so many variables that "all" is too costly. ## >> # # The available parameter types are: # LinearParameter # IntegerParameter # GammaParameter # IntegerGammaParameter # For GammaParameter, quadratic regression is performed on log(x) competition_type = "clop_tuner" description = """\ Sample control file for CLOP integration. """ def gnugo(level): return Player("gnugo --mode=gtp --chinese-rules --capture-all-dead " "--level=%d" % level) def pachi(playouts, policy): return Player( "~/src/pachi/pachi " "-d 0 " # silence stderr "-t =%d " "threads=1,max_tree_size=2048 " "policy=%s " % (playouts, policy)) players = { 'gnugo-l7' : gnugo(7), } parameters = [ Parameter('equiv_rave', type = "GammaParameter", min = 40, max = 32000), ] def make_candidate(equiv_rave): return pachi(2000, policy="ucb1amaf:equiv_rave=%f" % equiv_rave) board_size = 19 komi = 7.5 opponent = 'gnugo-l7' candidate_colour = 'w' parallel = 2