--- Procedural generation methods function init_world() -- Metadata for different biomes -- tile_frequencies tuples are {frequency, sprite_index}, see index_map.md -- frequencies by convention add up to 1000, but this is arbitrary, the -- only concern is the space consumed by the resulting tables. biome_data = { meadow = { biome_frequency = 20, tile_frequencies = { {525, 2}, {200, 5}, {200, 6}, {55, 18}, {19, 3}, {1, 4} } }, grassland = { biome_frequency = 55, tile_frequencies = { {500, 2}, {345, 18}, {4, 3}, {1, 4}, {100, 5}, {50, 6} } }, forest = { biome_frequency = 20, tile_frequencies = { {600, 2}, {200, 4}, {50, 3}, {50, 5}, {40, 7}, {59, 6}, {1, 8} } }, desert = { biome_frequency = 5, tile_frequencies = { {800, 9}, {109, 11}, {60, 13}, {30, 12}, {1, 10} }, } } -- Why is this hard-coded separately from the biome_data? glad you asked. -- Lua's pairs() function appears not to guarantee a consistent return order, -- and we want our world to be deterministically generated, -- so the biome_metadata array needs to have its entries appear consistently. biome_list = {"grassland", "meadow", "forest", "desert"} -- this is the frequency list for the biomes themselves biome_metadata = {} for i=1,#biome_list do local biome = biome_list[i] -- add the biome's name N times to the biome metadata 'hat' for i=1,biome_data[biome].biome_frequency do add(biome_metadata, biome) end build_biome(biome, biome_data[biome]) end -- the indices here are sprite numbers. object_interaction_map = { -- bush [3] = { replacement = 17, sfx = 13, drop = 68 }, -- tree [4] = { replacement = 14, sfx = 11, drop = 64 }, -- big mushroom [8] = { replacement = 16, sfx = 12, drop = 65 }, -- cactus w/ flower [10] = { replacement = 15, sfx = 12, drop = 67 }, -- cactus [13] = { replacement = 15, sfx = 12, drop = 66 } } -- initialize a ring buffer of changed positions. In use, this will be keyed -- using strings of the form mod_buffer["x:y"], using absolute world -- coordinates. this is to flatten the buffer so that #mod_cache is useful -- for checking against the number of allowed entries mod_buffer = {} mod_queue = {} end -- draw the sprites for this part of the world to the screen -- this calculates everything about the world fresh every frame, -- but pico-8 handles this just fine! function draw_world(start_x, start_y) for x=0,15 do for y=0,15 do spr(get_tile(start_x-8+x, start_y-8+y), x*8, y*8) end end end -- build the lookup table for a given biome, based on the biome_meta data for -- that string. function build_biome(biome_name, data) local meta_frequencies = data.tile_frequencies local tile_lookup = {} for i=1,#meta_frequencies do local tuple = meta_frequencies[i] for j=1,tuple[1] do add(tile_lookup, tuple[2]) end end data.tile_lookup = tile_lookup end -- generates a unique identifier for a position -- uses srand() and rand() to get an unpredictable value (is this too slow?) -- the two seed values are randomly chosen. Change them and change the world. function generate_uid(pos_x, pos_y) srand((pos_x + 2229) * (pos_y + 12295)) return flr(rnd(0xffff)) end -- given an {x,y} position, calculates the aligned starting position for the -- biome that position is in. -- biomes are currently defined to be 128x128 function calculate_biome_pos(pos_x, pos_y) return flr(pos_x / 128), flr(pos_y / 128) end -- determines which biome a given world map position should be, -- returns the object out of the biome_data table function get_biome_name(pos_x, pos_y) local biome_pos_x, biome_pos_y = calculate_biome_pos(pos_x, pos_y) local uid = generate_uid(biome_pos_x, biome_pos_y) return biome_metadata[(uid % #biome_metadata) + 1] end -- determine what sprite to render for a given position. -- pos_x and pos_y are global coordinates. function get_tile(pos_x, pos_y) -- lookup changes in the change buffer local modded_sprite = mod_buffer[get_mod_key(pos_x, pos_y)] if (modded_sprite) return modded_sprite local biome_name = get_biome_name(pos_x, pos_y) local biome = biome_data[biome_name] local uid = generate_uid(pos_x, pos_y) return biome.tile_lookup[(uid % #biome.tile_lookup) + 1] end --- --- mod buffer functions - these handle parts of the world map that have --- changed from their 'default' position --- --- todo: the mod buffer eventually needs to be a bit more elaborate. --- we need to make it possible to cull only old and unimportant changes, --- so each entry needs a 'critical' flag and something to indicate order --- added. We could keep 2 buffers for the latter, one that's just keys --- in an array... expensive though. --- -- x and y are global coords function get_mod_key(x, y) return tostr(x) .. ":" .. tostr(y) end -- x and y are map-local coords function write_map_change(new_sprite, x, y, perm) if #mod_buffer >= 8192 then cull_mod_buffer() end local key = get_mod_key(x, y) mod_buffer[key] = new_sprite -- the queue gives us a time-ordered list of items to delete. -- anything that should persist is simply not added to the queue, -- making it un-deletable. -- obviously if we end up with a *very large number* of persistent -- objects we can run into trouble, but this is functionally a design -- limitation. if not perm then add(mod_queue, key) end end function cull_mod_buffer() -- we cull 512 entries at a time. -- stub: implement me! end